from __future__ import annotations import math import torch import comfy.model_management import comfy.sampler_helpers import comfy.samplers import comfy.utils import node_helpers from comfy_api.latest import io def perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale): pos = noise_pred_pos - noise_pred_nocond neg = noise_pred_neg - noise_pred_nocond perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos perp_neg = perp * neg_scale return noise_pred_nocond + cond_scale*(pos - perp_neg) class Guider_PerpNeg(comfy.samplers.CFGGuider): def set_conds(self, positive, negative, empty_negative_prompt): empty_negative_prompt = node_helpers.conditioning_set_values(empty_negative_prompt, {"prompt_type": "negative"}) self.inner_set_conds({"positive": positive, "empty_negative_prompt": empty_negative_prompt, "negative": negative}) def set_cfg(self, cfg, neg_scale): self.cfg = cfg self.neg_scale = neg_scale def predict_noise(self, x, timestep, model_options={}, seed=None): # in CFGGuider.predict_noise, we call sampling_function(), which uses cfg_function() to compute pos & neg # but we'd rather do a single batch of sampling pos, neg, and empty, so we call calc_cond_batch([pos,neg,empty]) directly positive_cond = self.conds.get("positive", None) negative_cond = self.conds.get("negative", None) empty_cond = self.conds.get("empty_negative_prompt", None) if not model_options.get("disable_cfg1_optimization", False): if math.isclose(self.neg_scale, 0.0): negative_cond = None if math.isclose(self.cfg, 1.0): empty_cond = None conds = [positive_cond, negative_cond, empty_cond] out = comfy.samplers.calc_cond_batch(self.inner_model, conds, x, timestep, model_options) # Apply pre_cfg_functions since sampling_function() is skipped for fn in model_options.get("sampler_pre_cfg_function", []): args = {"conds":conds, "conds_out": out, "cond_scale": self.cfg, "timestep": timestep, "input": x, "sigma": timestep, "model": self.inner_model, "model_options": model_options} out = fn(args) noise_pred_pos, noise_pred_neg, noise_pred_empty = out cfg_result = perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_empty, self.neg_scale, self.cfg) # normally this would be done in cfg_function, but we skipped # that for efficiency: we can compute the noise predictions in # a single call to calc_cond_batch() (rather than two) # so we replicate the hook here for fn in model_options.get("sampler_post_cfg_function", []): args = { "denoised": cfg_result, "cond": positive_cond, "uncond": negative_cond, "cond_scale": self.cfg, "model": self.inner_model, "uncond_denoised": noise_pred_neg, "cond_denoised": noise_pred_pos, "sigma": timestep, "model_options": model_options, "input": x, # not in the original call in samplers.py:cfg_function, but made available for future hooks "empty_cond": empty_cond, "empty_cond_denoised": noise_pred_empty,} cfg_result = fn(args) return cfg_result class PerpNegGuider(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="PerpNegGuider_V3", category="_for_testing", inputs=[ io.Model.Input("model"), io.Conditioning.Input("positive"), io.Conditioning.Input("negative"), io.Conditioning.Input("empty_conditioning"), io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), io.Float.Input("neg_scale", default=1.0, min=0.0, max=100.0, step=0.01), ], outputs=[ io.Guider.Output(), ], is_experimental=True, ) @classmethod def execute(cls, model, positive, negative, empty_conditioning, cfg, neg_scale): guider = Guider_PerpNeg(model) guider.set_conds(positive, negative, empty_conditioning) guider.set_cfg(cfg, neg_scale) return io.NodeOutput(guider) NODES_LIST: list[type[io.ComfyNode]] = [ PerpNegGuider, ]