from __future__ import annotations import torch import comfy.latent_formats import comfy.model_management import comfy.utils import nodes from comfy_api.latest import io def vae_encode_with_padding(vae, image, width, height, length, padding=0): pixels = comfy.utils.common_upscale(image[..., :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) pixel_len = min(pixels.shape[0], length) padded_length = min(length, (((pixel_len - 1) // 8) + 1 + padding) * 8 - 7) padded_pixels = torch.ones((padded_length, height, width, 3)) * 0.5 padded_pixels[:pixel_len] = pixels[:pixel_len] latent_len = ((pixel_len - 1) // 8) + 1 latent_temp = vae.encode(padded_pixels) return latent_temp[:, :, :latent_len] class CosmosImageToVideoLatent(io.ComfyNode): @classmethod def define_schema(cls) -> io.Schema: return io.Schema( node_id="CosmosImageToVideoLatent_V3", category="conditioning/inpaint", inputs=[ io.Vae.Input("vae"), io.Int.Input("width", default=1280, min=16, max=nodes.MAX_RESOLUTION, step=16), io.Int.Input("height", default=704, min=16, max=nodes.MAX_RESOLUTION, step=16), io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=8), io.Int.Input("batch_size", default=1, min=1, max=4096), io.Image.Input("start_image", optional=True), io.Image.Input("end_image", optional=True), ], outputs=[io.Latent.Output()], ) @classmethod def execute(cls, vae, width, height, length, batch_size, start_image=None, end_image=None) -> io.NodeOutput: latent = torch.zeros([1, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) if start_image is None and end_image is None: out_latent = {} out_latent["samples"] = latent return io.NodeOutput(out_latent) mask = torch.ones( [latent.shape[0], 1, ((length - 1) // 8) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device(), ) if start_image is not None: latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1) latent[:, :, :latent_temp.shape[-3]] = latent_temp mask[:, :, :latent_temp.shape[-3]] *= 0.0 if end_image is not None: latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0) latent[:, :, -latent_temp.shape[-3]:] = latent_temp mask[:, :, -latent_temp.shape[-3]:] *= 0.0 out_latent = {} out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1)) out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1)) return io.NodeOutput(out_latent) class CosmosPredict2ImageToVideoLatent(io.ComfyNode): @classmethod def define_schema(cls) -> io.Schema: return io.Schema( node_id="CosmosPredict2ImageToVideoLatent_V3", category="conditioning/inpaint", inputs=[ io.Vae.Input("vae"), io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16), io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16), io.Int.Input("length", default=93, min=1, max=nodes.MAX_RESOLUTION, step=4), io.Int.Input("batch_size", default=1, min=1, max=4096), io.Image.Input("start_image", optional=True), io.Image.Input("end_image", optional=True), ], outputs=[io.Latent.Output()], ) @classmethod def execute(cls, vae, width, height, length, batch_size, start_image=None, end_image=None) -> io.NodeOutput: latent = torch.zeros([1, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) if start_image is None and end_image is None: out_latent = {} out_latent["samples"] = latent return io.NodeOutput(out_latent) mask = torch.ones( [latent.shape[0], 1, ((length - 1) // 4) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device(), ) if start_image is not None: latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1) latent[:, :, :latent_temp.shape[-3]] = latent_temp mask[:, :, :latent_temp.shape[-3]] *= 0.0 if end_image is not None: latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0) latent[:, :, -latent_temp.shape[-3]:] = latent_temp mask[:, :, -latent_temp.shape[-3]:] *= 0.0 out_latent = {} latent_format = comfy.latent_formats.Wan21() latent = latent_format.process_out(latent) * mask + latent * (1.0 - mask) out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1)) out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1)) return io.NodeOutput(out_latent) class EmptyCosmosLatentVideo(io.ComfyNode): @classmethod def define_schema(cls) -> io.Schema: return io.Schema( node_id="EmptyCosmosLatentVideo_V3", category="latent/video", inputs=[ io.Int.Input("width", default=1280, min=16, max=nodes.MAX_RESOLUTION, step=16), io.Int.Input("height", default=704, min=16, max=nodes.MAX_RESOLUTION, step=16), io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=8), io.Int.Input("batch_size", default=1, min=1, max=4096), ], outputs=[io.Latent.Output()], ) @classmethod def execute(cls, width, height, length, batch_size) -> io.NodeOutput: latent = torch.zeros( [batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device() ) return io.NodeOutput({"samples": latent}) NODES_LIST = [ CosmosImageToVideoLatent, CosmosPredict2ImageToVideoLatent, EmptyCosmosLatentVideo, ]