from __future__ import annotations import logging import os from enum import Enum import torch import comfy.model_management import comfy.utils import folder_paths from comfy_api.v3 import io CLAMP_QUANTILE = 0.99 def extract_lora(diff, rank): conv2d = (len(diff.shape) == 4) kernel_size = None if not conv2d else diff.size()[2:4] conv2d_3x3 = conv2d and kernel_size != (1, 1) out_dim, in_dim = diff.size()[0:2] rank = min(rank, in_dim, out_dim) if conv2d: if conv2d_3x3: diff = diff.flatten(start_dim=1) else: diff = diff.squeeze() U, S, Vh = torch.linalg.svd(diff.float()) U = U[:, :rank] S = S[:rank] U = U @ torch.diag(S) Vh = Vh[:rank, :] dist = torch.cat([U.flatten(), Vh.flatten()]) hi_val = torch.quantile(dist, CLAMP_QUANTILE) low_val = -hi_val U = U.clamp(low_val, hi_val) Vh = Vh.clamp(low_val, hi_val) if conv2d: U = U.reshape(out_dim, rank, 1, 1) Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) return (U, Vh) class LORAType(Enum): STANDARD = 0 FULL_DIFF = 1 LORA_TYPES = { "standard": LORAType.STANDARD, "full_diff": LORAType.FULL_DIFF, } def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False): comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True) sd = model_diff.model_state_dict(filter_prefix=prefix_model) for k in sd: if k.endswith(".weight"): weight_diff = sd[k] if lora_type == LORAType.STANDARD: if weight_diff.ndim < 2: if bias_diff: output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu() continue try: out = extract_lora(weight_diff, rank) output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().half().cpu() output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().half().cpu() except Exception: logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k)) elif lora_type == LORAType.FULL_DIFF: output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu() elif bias_diff and k.endswith(".bias"): output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu() return output_sd class LoraSave(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="LoraSave_V3", display_name="Extract and Save Lora _V3", category="_for_testing", is_output_node=True, inputs=[ io.String.Input(id="filename_prefix", default="loras/ComfyUI_extracted_lora"), io.Int.Input(id="rank", default=8, min=1, max=4096, step=1), io.Combo.Input(id="lora_type", options=list(LORA_TYPES.keys())), io.Boolean.Input(id="bias_diff", default=True), io.Model.Input( id="model_diff", optional=True, tooltip="The ModelSubtract output to be converted to a lora." ), io.Clip.Input( id="text_encoder_diff", optional=True, tooltip="The CLIPSubtract output to be converted to a lora." ), ], outputs=[], is_experimental=True, ) @classmethod def execute(cls, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None): if model_diff is None and text_encoder_diff is None: return io.NodeOutput() lora_type = LORA_TYPES.get(lora_type) full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path( filename_prefix, folder_paths.get_output_directory() ) output_sd = {} if model_diff is not None: output_sd = calc_lora_model( model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, bias_diff=bias_diff ) if text_encoder_diff is not None: output_sd = calc_lora_model( text_encoder_diff.patcher, rank, "", "text_encoders.", output_sd, lora_type, bias_diff=bias_diff ) output_checkpoint = f"{filename}_{counter:05}_.safetensors" output_checkpoint = os.path.join(full_output_folder, output_checkpoint) comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None) return io.NodeOutput() NODES_LIST = [ LoraSave, ]