from __future__ import annotations import json import os import random from io import BytesIO from typing import Type import av import numpy as np import torch try: import torchaudio TORCH_AUDIO_AVAILABLE = True except ImportError: TORCH_AUDIO_AVAILABLE = False from PIL import Image as PILImage from PIL.PngImagePlugin import PngInfo import folder_paths # used for image preview from comfy.cli_args import args from comfy_api.latest._io import ComfyNode, FolderType, Image, _UIOutput class SavedResult(dict): def __init__(self, filename: str, subfolder: str, type: FolderType): super().__init__(filename=filename, subfolder=subfolder,type=type.value) @property def filename(self) -> str: return self["filename"] @property def subfolder(self) -> str: return self["subfolder"] @property def type(self) -> FolderType: return FolderType(self["type"]) class SavedImages(_UIOutput): """A UI output class to represent one or more saved images, potentially animated.""" def __init__(self, results: list[SavedResult], is_animated: bool = False): super().__init__() self.results = results self.is_animated = is_animated def as_dict(self) -> dict: data = {"images": self.results} if self.is_animated: data["animated"] = (True,) return data class SavedAudios(_UIOutput): """UI wrapper around one or more audio files on disk (FLAC / MP3 / Opus).""" def __init__(self, results: list[SavedResult]): super().__init__() self.results = results def as_dict(self) -> dict: return {"audio": self.results} def _get_directory_by_folder_type(folder_type: FolderType) -> str: if folder_type == FolderType.input: return folder_paths.get_input_directory() if folder_type == FolderType.output: return folder_paths.get_output_directory() return folder_paths.get_temp_directory() class ImageSaveHelper: """A helper class with static methods to handle image saving and metadata.""" @staticmethod def _convert_tensor_to_pil(image_tensor: torch.Tensor) -> PILImage.Image: """Converts a single torch tensor to a PIL Image.""" return PILImage.fromarray(np.clip(255.0 * image_tensor.cpu().numpy(), 0, 255).astype(np.uint8)) @staticmethod def _create_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None: """Creates a PngInfo object with prompt and extra_pnginfo.""" if args.disable_metadata or cls is None or not cls.hidden: return None metadata = PngInfo() if cls.hidden.prompt: metadata.add_text("prompt", json.dumps(cls.hidden.prompt)) if cls.hidden.extra_pnginfo: for x in cls.hidden.extra_pnginfo: metadata.add_text(x, json.dumps(cls.hidden.extra_pnginfo[x])) return metadata @staticmethod def _create_animated_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None: """Creates a PngInfo object with prompt and extra_pnginfo for animated PNGs (APNG).""" if args.disable_metadata or cls is None or not cls.hidden: return None metadata = PngInfo() if cls.hidden.prompt: metadata.add( b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(cls.hidden.prompt).encode("latin-1", "strict"), after_idat=True, ) if cls.hidden.extra_pnginfo: for x in cls.hidden.extra_pnginfo: metadata.add( b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(cls.hidden.extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True, ) return metadata @staticmethod def _create_webp_metadata(pil_image: PILImage.Image, cls: Type[ComfyNode] | None) -> PILImage.Exif: """Creates EXIF metadata bytes for WebP images.""" exif_data = pil_image.getexif() if args.disable_metadata or cls is None or cls.hidden is None: return exif_data if cls.hidden.prompt is not None: exif_data[0x0110] = "prompt:{}".format(json.dumps(cls.hidden.prompt)) # EXIF 0x0110 = Model if cls.hidden.extra_pnginfo is not None: inital_exif_tag = 0x010F # EXIF 0x010f = Make for key, value in cls.hidden.extra_pnginfo.items(): exif_data[inital_exif_tag] = "{}:{}".format(key, json.dumps(value)) inital_exif_tag -= 1 return exif_data @staticmethod def save_images( images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, compress_level = 4, ) -> list[SavedResult]: """Saves a batch of images as individual PNG files.""" full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0] ) results = [] metadata = ImageSaveHelper._create_png_metadata(cls) for batch_number, image_tensor in enumerate(images): img = ImageSaveHelper._convert_tensor_to_pil(image_tensor) filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) file = f"{filename_with_batch_num}_{counter:05}_.png" img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level) results.append(SavedResult(file, subfolder, folder_type)) counter += 1 return results @staticmethod def get_save_images_ui(images, filename_prefix: str, cls: Type[ComfyNode] | None, compress_level=4) -> SavedImages: """Saves a batch of images and returns a UI object for the node output.""" return SavedImages( ImageSaveHelper.save_images( images, filename_prefix=filename_prefix, folder_type=FolderType.output, cls=cls, compress_level=compress_level, ) ) @staticmethod def save_animated_png( images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, fps: float, compress_level: int ) -> SavedResult: """Saves a batch of images as a single animated PNG.""" full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0] ) pil_images = [ImageSaveHelper._convert_tensor_to_pil(img) for img in images] metadata = ImageSaveHelper._create_animated_png_metadata(cls) file = f"{filename}_{counter:05}_.png" save_path = os.path.join(full_output_folder, file) pil_images[0].save( save_path, pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0 / fps), append_images=pil_images[1:], ) return SavedResult(file, subfolder, folder_type) @staticmethod def get_save_animated_png_ui( images, filename_prefix: str, cls: Type[ComfyNode] | None, fps: float, compress_level: int ) -> SavedImages: """Saves an animated PNG and returns a UI object for the node output.""" result = ImageSaveHelper.save_animated_png( images, filename_prefix=filename_prefix, folder_type=FolderType.output, cls=cls, fps=fps, compress_level=compress_level, ) return SavedImages([result], is_animated=len(images) > 1) @staticmethod def save_animated_webp( images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, fps: float, lossless: bool, quality: int, method: int, ) -> SavedResult: """Saves a batch of images as a single animated WebP.""" full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0] ) pil_images = [ImageSaveHelper._convert_tensor_to_pil(img) for img in images] pil_exif = ImageSaveHelper._create_webp_metadata(pil_images[0], cls) file = f"{filename}_{counter:05}_.webp" pil_images[0].save( os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0 / fps), append_images=pil_images[1:], exif=pil_exif, lossless=lossless, quality=quality, method=method, ) return SavedResult(file, subfolder, folder_type) @staticmethod def get_save_animated_webp_ui( images, filename_prefix: str, cls: Type[ComfyNode] | None, fps: float, lossless: bool, quality: int, method: int, ) -> SavedImages: """Saves an animated WebP and returns a UI object for the node output.""" result = ImageSaveHelper.save_animated_webp( images, filename_prefix=filename_prefix, folder_type=FolderType.output, cls=cls, fps=fps, lossless=lossless, quality=quality, method=method, ) return SavedImages([result], is_animated=len(images) > 1) class AudioSaveHelper: """A helper class with static methods to handle audio saving and metadata.""" _OPUS_RATES = [8000, 12000, 16000, 24000, 48000] @staticmethod def save_audio( audio: dict, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, format: str = "flac", quality: str = "128k", ) -> list[SavedResult]: full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( filename_prefix, _get_directory_by_folder_type(folder_type) ) metadata = {} if not args.disable_metadata and cls is not None: if cls.hidden.prompt is not None: metadata["prompt"] = json.dumps(cls.hidden.prompt) if cls.hidden.extra_pnginfo is not None: for x in cls.hidden.extra_pnginfo: metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x]) results = [] for batch_number, waveform in enumerate(audio["waveform"].cpu()): filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) file = f"{filename_with_batch_num}_{counter:05}_.{format}" output_path = os.path.join(full_output_folder, file) # Use original sample rate initially sample_rate = audio["sample_rate"] # Handle Opus sample rate requirements if format == "opus": if sample_rate > 48000: sample_rate = 48000 elif sample_rate not in AudioSaveHelper._OPUS_RATES: # Find the next highest supported rate for rate in sorted(AudioSaveHelper._OPUS_RATES): if rate > sample_rate: sample_rate = rate break if sample_rate not in AudioSaveHelper._OPUS_RATES: # Fallback if still not supported sample_rate = 48000 # Resample if necessary if sample_rate != audio["sample_rate"]: if not TORCH_AUDIO_AVAILABLE: raise Exception("torchaudio is not available; cannot resample audio.") waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate) # Create output with specified format output_buffer = BytesIO() output_container = av.open(output_buffer, mode="w", format=format) # Set metadata on the container for key, value in metadata.items(): output_container.metadata[key] = value # Set up the output stream with appropriate properties if format == "opus": out_stream = output_container.add_stream("libopus", rate=sample_rate) if quality == "64k": out_stream.bit_rate = 64000 elif quality == "96k": out_stream.bit_rate = 96000 elif quality == "128k": out_stream.bit_rate = 128000 elif quality == "192k": out_stream.bit_rate = 192000 elif quality == "320k": out_stream.bit_rate = 320000 elif format == "mp3": out_stream = output_container.add_stream("libmp3lame", rate=sample_rate) if quality == "V0": # TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool out_stream.codec_context.qscale = 1 elif quality == "128k": out_stream.bit_rate = 128000 elif quality == "320k": out_stream.bit_rate = 320000 else: # format == "flac": out_stream = output_container.add_stream("flac", rate=sample_rate) frame = av.AudioFrame.from_ndarray( waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format="flt", layout="mono" if waveform.shape[0] == 1 else "stereo", ) frame.sample_rate = sample_rate frame.pts = 0 output_container.mux(out_stream.encode(frame)) # Flush encoder output_container.mux(out_stream.encode(None)) # Close containers output_container.close() # Write the output to file output_buffer.seek(0) with open(output_path, "wb") as f: f.write(output_buffer.getbuffer()) results.append(SavedResult(file, subfolder, folder_type)) counter += 1 return results @staticmethod def get_save_audio_ui( audio, filename_prefix: str, cls: Type[ComfyNode] | None, format: str = "flac", quality: str = "128k", ) -> SavedAudios: """Save and instantly wrap for UI.""" return SavedAudios( AudioSaveHelper.save_audio( audio, filename_prefix=filename_prefix, folder_type=FolderType.output, cls=cls, format=format, quality=quality, ) ) class PreviewImage(_UIOutput): def __init__(self, image: Image.Type, animated: bool = False, cls: Type[ComfyNode] = None, **kwargs): self.values = ImageSaveHelper.save_images( image, filename_prefix="ComfyUI_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5)), folder_type=FolderType.temp, cls=cls, compress_level=1, ) self.animated = animated def as_dict(self): return { "images": self.values, "animated": (self.animated,) } class PreviewMask(PreviewImage): def __init__(self, mask: PreviewMask.Type, animated: bool=False, cls: ComfyNode=None, **kwargs): preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) super().__init__(preview, animated, cls, **kwargs) class PreviewAudio(_UIOutput): def __init__(self, audio: dict, cls: Type[ComfyNode] = None, **kwargs): self.values = AudioSaveHelper.save_audio( audio, filename_prefix="ComfyUI_temp_" + "".join(random.choice("abcdefghijklmnopqrstuvwxyz") for _ in range(5)), folder_type=FolderType.temp, cls=cls, format="flac", quality="128k", ) def as_dict(self) -> dict: return {"audio": self.values} class PreviewVideo(_UIOutput): def __init__(self, values: list[SavedResult | dict], **kwargs): self.values = values def as_dict(self): return {"images": self.values, "animated": (True,)} class PreviewUI3D(_UIOutput): def __init__(self, model_file, camera_info, **kwargs): self.model_file = model_file self.camera_info = camera_info def as_dict(self): return {"result": [self.model_file, self.camera_info]} class PreviewText(_UIOutput): def __init__(self, value: str, **kwargs): self.value = value def as_dict(self): return {"text": (self.value,)} class _UI: SavedResult = SavedResult SavedImages = SavedImages SavedAudios = SavedAudios ImageSaveHelper = ImageSaveHelper AudioSaveHelper = AudioSaveHelper PreviewImage = PreviewImage PreviewMask = PreviewMask PreviewAudio = PreviewAudio PreviewVideo = PreviewVideo PreviewUI3D = PreviewUI3D PreviewText = PreviewText