import torch from torch import nn import folder_paths import comfy.utils import comfy.ops import comfy.model_management import comfy.ldm.common_dit import comfy.latent_formats class BlockWiseControlBlock(torch.nn.Module): # [linear, gelu, linear] def __init__(self, dim: int = 3072, device=None, dtype=None, operations=None): super().__init__() self.x_rms = operations.RMSNorm(dim, eps=1e-6) self.y_rms = operations.RMSNorm(dim, eps=1e-6) self.input_proj = operations.Linear(dim, dim) self.act = torch.nn.GELU() self.output_proj = operations.Linear(dim, dim) def forward(self, x, y): x, y = self.x_rms(x), self.y_rms(y) x = self.input_proj(x + y) x = self.act(x) x = self.output_proj(x) return x class QwenImageBlockWiseControlNet(torch.nn.Module): def __init__( self, num_layers: int = 60, in_dim: int = 64, additional_in_dim: int = 0, dim: int = 3072, device=None, dtype=None, operations=None ): super().__init__() self.additional_in_dim = additional_in_dim self.img_in = operations.Linear(in_dim + additional_in_dim, dim, device=device, dtype=dtype) self.controlnet_blocks = torch.nn.ModuleList( [ BlockWiseControlBlock(dim, device=device, dtype=dtype, operations=operations) for _ in range(num_layers) ] ) def process_input_latent_image(self, latent_image): latent_image[:, :16] = comfy.latent_formats.Wan21().process_in(latent_image[:, :16]) patch_size = 2 hidden_states = comfy.ldm.common_dit.pad_to_patch_size(latent_image, (1, patch_size, patch_size)) orig_shape = hidden_states.shape hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2) hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5) hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4) return self.img_in(hidden_states) def control_block(self, img, controlnet_conditioning, block_id): return self.controlnet_blocks[block_id](img, controlnet_conditioning) class SigLIPMultiFeatProjModel(torch.nn.Module): """ SigLIP Multi-Feature Projection Model for processing style features from different layers and projecting them into a unified hidden space. Args: siglip_token_nums (int): Number of SigLIP tokens, default 257 style_token_nums (int): Number of style tokens, default 256 siglip_token_dims (int): Dimension of SigLIP tokens, default 1536 hidden_size (int): Hidden layer size, default 3072 context_layer_norm (bool): Whether to use context layer normalization, default False """ def __init__( self, siglip_token_nums: int = 729, style_token_nums: int = 64, siglip_token_dims: int = 1152, hidden_size: int = 3072, context_layer_norm: bool = True, device=None, dtype=None, operations=None ): super().__init__() # High-level feature processing (layer -2) self.high_embedding_linear = nn.Sequential( operations.Linear(siglip_token_nums, style_token_nums), nn.SiLU() ) self.high_layer_norm = ( operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() ) self.high_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True) # Mid-level feature processing (layer -11) self.mid_embedding_linear = nn.Sequential( operations.Linear(siglip_token_nums, style_token_nums), nn.SiLU() ) self.mid_layer_norm = ( operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() ) self.mid_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True) # Low-level feature processing (layer -20) self.low_embedding_linear = nn.Sequential( operations.Linear(siglip_token_nums, style_token_nums), nn.SiLU() ) self.low_layer_norm = ( operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() ) self.low_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True) def forward(self, siglip_outputs): """ Forward pass function Args: siglip_outputs: Output from SigLIP model, containing hidden_states Returns: torch.Tensor: Concatenated multi-layer features with shape [bs, 3*style_token_nums, hidden_size] """ dtype = next(self.high_embedding_linear.parameters()).dtype # Process high-level features (layer -2) high_embedding = self._process_layer_features( siglip_outputs[2], self.high_embedding_linear, self.high_layer_norm, self.high_projection, dtype ) # Process mid-level features (layer -11) mid_embedding = self._process_layer_features( siglip_outputs[1], self.mid_embedding_linear, self.mid_layer_norm, self.mid_projection, dtype ) # Process low-level features (layer -20) low_embedding = self._process_layer_features( siglip_outputs[0], self.low_embedding_linear, self.low_layer_norm, self.low_projection, dtype ) # Concatenate features from all layersmodel_patch return torch.cat((high_embedding, mid_embedding, low_embedding), dim=1) def _process_layer_features( self, hidden_states: torch.Tensor, embedding_linear: nn.Module, layer_norm: nn.Module, projection: nn.Module, dtype: torch.dtype ) -> torch.Tensor: """ Helper function to process features from a single layer Args: hidden_states: Input hidden states [bs, seq_len, dim] embedding_linear: Embedding linear layer layer_norm: Layer normalization projection: Projection layer dtype: Target data type Returns: torch.Tensor: Processed features [bs, style_token_nums, hidden_size] """ # Transform dimensions: [bs, seq_len, dim] -> [bs, dim, seq_len] -> [bs, dim, style_token_nums] -> [bs, style_token_nums, dim] embedding = embedding_linear( hidden_states.to(dtype).transpose(1, 2) ).transpose(1, 2) # Apply layer normalization embedding = layer_norm(embedding) # Project to target hidden space embedding = projection(embedding) return embedding class ModelPatchLoader: @classmethod def INPUT_TYPES(s): return {"required": { "name": (folder_paths.get_filename_list("model_patches"), ), }} RETURN_TYPES = ("MODEL_PATCH",) FUNCTION = "load_model_patch" EXPERIMENTAL = True CATEGORY = "advanced/loaders" def load_model_patch(self, name): model_patch_path = folder_paths.get_full_path_or_raise("model_patches", name) sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True) dtype = comfy.utils.weight_dtype(sd) if 'controlnet_blocks.0.y_rms.weight' in sd: additional_in_dim = sd["img_in.weight"].shape[1] - 64 model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) elif 'feature_embedder.mid_layer_norm.bias' in sd: sd = comfy.utils.state_dict_prefix_replace(sd, {"feature_embedder.": ""}, filter_keys=True) model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) model.load_state_dict(sd) model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) return (model,) class DiffSynthCnetPatch: def __init__(self, model_patch, vae, image, strength, mask=None): self.model_patch = model_patch self.vae = vae self.image = image self.strength = strength self.mask = mask self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image)) self.encoded_image_size = (image.shape[1], image.shape[2]) def encode_latent_cond(self, image): latent_image = self.vae.encode(image) if self.model_patch.model.additional_in_dim > 0: if self.mask is None: mask_ = torch.ones_like(latent_image)[:, :self.model_patch.model.additional_in_dim // 4] else: mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none") return torch.cat([latent_image, mask_], dim=1) else: return latent_image def __call__(self, kwargs): x = kwargs.get("x") img = kwargs.get("img") block_index = kwargs.get("block_index") spacial_compression = self.vae.spacial_compression_encode() if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression): image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center") loaded_models = comfy.model_management.loaded_models(only_currently_used=True) self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1))) self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1]) comfy.model_management.load_models_gpu(loaded_models) img[:, :self.encoded_image.shape[1]] += (self.model_patch.model.control_block(img[:, :self.encoded_image.shape[1]], self.encoded_image.to(img.dtype), block_index) * self.strength) kwargs['img'] = img return kwargs def to(self, device_or_dtype): if isinstance(device_or_dtype, torch.device): self.encoded_image = self.encoded_image.to(device_or_dtype) return self def models(self): return [self.model_patch] class QwenImageDiffsynthControlnet: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "model_patch": ("MODEL_PATCH",), "vae": ("VAE",), "image": ("IMAGE",), "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), }, "optional": {"mask": ("MASK",)}} RETURN_TYPES = ("MODEL",) FUNCTION = "diffsynth_controlnet" EXPERIMENTAL = True CATEGORY = "advanced/loaders/qwen" def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None): model_patched = model.clone() image = image[:, :, :, :3] if mask is not None: if mask.ndim == 3: mask = mask.unsqueeze(1) if mask.ndim == 4: mask = mask.unsqueeze(2) mask = 1.0 - mask model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) return (model_patched,) class UsoStyleProjectorPatch: def __init__(self, model_patch, encoded_image): self.model_patch = model_patch self.encoded_image = encoded_image def __call__(self, kwargs): txt_ids = kwargs.get("txt_ids") txt = kwargs.get("txt") siglip_embedding = self.model_patch.model(self.encoded_image.to(txt.dtype)).to(txt.dtype) txt = torch.cat([siglip_embedding, txt], dim=1) kwargs['txt'] = txt kwargs['txt_ids'] = torch.cat([torch.zeros(siglip_embedding.shape[0], siglip_embedding.shape[1], 3, dtype=txt_ids.dtype, device=txt_ids.device), txt_ids], dim=1) return kwargs def to(self, device_or_dtype): if isinstance(device_or_dtype, torch.device): self.encoded_image = self.encoded_image.to(device_or_dtype) return self def models(self): return [self.model_patch] class USOStyleReference: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "model_patch": ("MODEL_PATCH",), "clip_vision_output": ("CLIP_VISION_OUTPUT", ), }} RETURN_TYPES = ("MODEL",) FUNCTION = "apply_patch" EXPERIMENTAL = True CATEGORY = "advanced/model_patches/flux" def apply_patch(self, model, model_patch, clip_vision_output): encoded_image = torch.stack((clip_vision_output.all_hidden_states[:, -20], clip_vision_output.all_hidden_states[:, -11], clip_vision_output.penultimate_hidden_states)) model_patched = model.clone() model_patched.set_model_post_input_patch(UsoStyleProjectorPatch(model_patch, encoded_image)) return (model_patched,) NODE_CLASS_MAPPINGS = { "ModelPatchLoader": ModelPatchLoader, "QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet, "USOStyleReference": USOStyleReference, }