import logging from typing import Optional import torch from comfy_api.input.video_types import VideoInput def get_image_dimensions(image: torch.Tensor) -> tuple[int, int]: if len(image.shape) == 4: return image.shape[1], image.shape[2] elif len(image.shape) == 3: return image.shape[0], image.shape[1] else: raise ValueError("Invalid image tensor shape.") def validate_image_dimensions( image: torch.Tensor, min_width: Optional[int] = None, max_width: Optional[int] = None, min_height: Optional[int] = None, max_height: Optional[int] = None, ): height, width = get_image_dimensions(image) if min_width is not None and width < min_width: raise ValueError(f"Image width must be at least {min_width}px, got {width}px") if max_width is not None and width > max_width: raise ValueError(f"Image width must be at most {max_width}px, got {width}px") if min_height is not None and height < min_height: raise ValueError( f"Image height must be at least {min_height}px, got {height}px" ) if max_height is not None and height > max_height: raise ValueError(f"Image height must be at most {max_height}px, got {height}px") def validate_image_aspect_ratio( image: torch.Tensor, min_aspect_ratio: Optional[float] = None, max_aspect_ratio: Optional[float] = None, ): width, height = get_image_dimensions(image) aspect_ratio = width / height if min_aspect_ratio is not None and aspect_ratio < min_aspect_ratio: raise ValueError( f"Image aspect ratio must be at least {min_aspect_ratio}, got {aspect_ratio}" ) if max_aspect_ratio is not None and aspect_ratio > max_aspect_ratio: raise ValueError( f"Image aspect ratio must be at most {max_aspect_ratio}, got {aspect_ratio}" ) def validate_image_aspect_ratio_range( image: torch.Tensor, min_ratio: tuple[float, float], # e.g. (1, 4) max_ratio: tuple[float, float], # e.g. (4, 1) *, strict: bool = True, # True -> (min, max); False -> [min, max] ) -> float: a1, b1 = min_ratio a2, b2 = max_ratio if a1 <= 0 or b1 <= 0 or a2 <= 0 or b2 <= 0: raise ValueError("Ratios must be positive, like (1, 4) or (4, 1).") lo, hi = (a1 / b1), (a2 / b2) if lo > hi: lo, hi = hi, lo a1, b1, a2, b2 = a2, b2, a1, b1 # swap only for error text w, h = get_image_dimensions(image) if w <= 0 or h <= 0: raise ValueError(f"Invalid image dimensions: {w}x{h}") ar = w / h ok = (lo < ar < hi) if strict else (lo <= ar <= hi) if not ok: op = "<" if strict else "≤" raise ValueError(f"Image aspect ratio {ar:.6g} is outside allowed range: {a1}:{b1} {op} ratio {op} {a2}:{b2}") return ar def validate_aspect_ratio_closeness( start_img, end_img, min_rel: float, max_rel: float, *, strict: bool = False, # True => exclusive, False => inclusive ) -> None: w1, h1 = get_image_dimensions(start_img) w2, h2 = get_image_dimensions(end_img) if min(w1, h1, w2, h2) <= 0: raise ValueError("Invalid image dimensions") ar1 = w1 / h1 ar2 = w2 / h2 # Normalize so it is symmetric (no need to check both ar1/ar2 and ar2/ar1) closeness = max(ar1, ar2) / min(ar1, ar2) limit = max(max_rel, 1.0 / min_rel) # for 0.8..1.25 this is 1.25 if (closeness >= limit) if strict else (closeness > limit): raise ValueError(f"Aspect ratios must be close: start/end={ar1/ar2:.4f}, allowed range {min_rel}–{max_rel}.") def validate_video_dimensions( video: VideoInput, min_width: Optional[int] = None, max_width: Optional[int] = None, min_height: Optional[int] = None, max_height: Optional[int] = None, ): try: width, height = video.get_dimensions() except Exception as e: logging.error("Error getting dimensions of video: %s", e) return if min_width is not None and width < min_width: raise ValueError(f"Video width must be at least {min_width}px, got {width}px") if max_width is not None and width > max_width: raise ValueError(f"Video width must be at most {max_width}px, got {width}px") if min_height is not None and height < min_height: raise ValueError( f"Video height must be at least {min_height}px, got {height}px" ) if max_height is not None and height > max_height: raise ValueError(f"Video height must be at most {max_height}px, got {height}px") def validate_video_duration( video: VideoInput, min_duration: Optional[float] = None, max_duration: Optional[float] = None, ): try: duration = video.get_duration() except Exception as e: logging.error("Error getting duration of video: %s", e) return epsilon = 0.0001 if min_duration is not None and min_duration - epsilon > duration: raise ValueError( f"Video duration must be at least {min_duration}s, got {duration}s" ) if max_duration is not None and duration > max_duration + epsilon: raise ValueError( f"Video duration must be at most {max_duration}s, got {duration}s" ) def get_number_of_images(images): if isinstance(images, torch.Tensor): return images.shape[0] if images.ndim >= 4 else 1 return len(images)