from comfy import sd1_clip from .spiece_tokenizer import SPieceTokenizer import comfy.text_encoders.t5 import os import re import torch import logging from tokenizers import Tokenizer from .ace_text_cleaners import multilingual_cleaners SUPPORT_LANGUAGES = { "en": 259, "de": 260, "fr": 262, "es": 284, "it": 285, "pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293, "nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753, "ko": 6152, "hi": 6680 } structure_pattern = re.compile(r"\[.*?\]") DEFAULT_VOCAB_FILE = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json") class VoiceBpeTokenizer: def __init__(self, vocab_file=DEFAULT_VOCAB_FILE): self.tokenizer = None if vocab_file is not None: self.tokenizer = Tokenizer.from_file(vocab_file) def preprocess_text(self, txt, lang): txt = multilingual_cleaners(txt, lang) return txt def encode(self, txt, lang='en'): # lang = lang.split("-")[0] # remove the region # self.check_input_length(txt, lang) txt = self.preprocess_text(txt, lang) lang = "zh-cn" if lang == "zh" else lang txt = f"[{lang}]{txt}" txt = txt.replace(" ", "[SPACE]") return self.tokenizer.encode(txt).ids def get_lang(self, line): if line.startswith("[") and line[3:4] == ']': lang = line[1:3].lower() if lang in SUPPORT_LANGUAGES: return lang, line[4:] return "en", line def __call__(self, string): lines = string.split("\n") lyric_token_idx = [261] for line in lines: line = line.strip() if not line: lyric_token_idx += [2] continue lang, line = self.get_lang(line) if lang not in SUPPORT_LANGUAGES: lang = "en" if "zh" in lang: lang = "zh" if "spa" in lang: lang = "es" try: if structure_pattern.match(line): token_idx = self.encode(line, "en") else: token_idx = self.encode(line, lang) lyric_token_idx = lyric_token_idx + token_idx + [2] except Exception as e: logging.warning("tokenize error {} for line {} major_language {}".format(e, line, lang)) return {"input_ids": lyric_token_idx} @staticmethod def from_pretrained(path, **kwargs): return VoiceBpeTokenizer(path, **kwargs) def get_vocab(self): return {} class UMT5BaseModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "umt5_config_base.json") super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=False, model_options=model_options) class UMT5BaseTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer = tokenizer_data.get("spiece_model", None) super().__init__(tokenizer, pad_with_end=False, embedding_size=768, embedding_key='umt5base', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=0, tokenizer_data=tokenizer_data) def state_dict(self): return {"spiece_model": self.tokenizer.serialize_model()} class LyricsTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json") super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='lyrics', tokenizer_class=VoiceBpeTokenizer, has_start_token=True, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=2, has_end_token=False, tokenizer_data=tokenizer_data) class AceT5Tokenizer: def __init__(self, embedding_directory=None, tokenizer_data={}): self.voicebpe = LyricsTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) self.umt5base = UMT5BaseTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} out["lyrics"] = self.voicebpe.tokenize_with_weights(kwargs.get("lyrics", ""), return_word_ids, **kwargs) out["umt5base"] = self.umt5base.tokenize_with_weights(text, return_word_ids, **kwargs) return out def untokenize(self, token_weight_pair): return self.umt5base.untokenize(token_weight_pair) def state_dict(self): return self.umt5base.state_dict() class AceT5Model(torch.nn.Module): def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs): super().__init__() self.umt5base = UMT5BaseModel(device=device, dtype=dtype, model_options=model_options) self.dtypes = set() if dtype is not None: self.dtypes.add(dtype) def set_clip_options(self, options): self.umt5base.set_clip_options(options) def reset_clip_options(self): self.umt5base.reset_clip_options() def encode_token_weights(self, token_weight_pairs): token_weight_pairs_umt5base = token_weight_pairs["umt5base"] token_weight_pairs_lyrics = token_weight_pairs["lyrics"] t5_out, t5_pooled = self.umt5base.encode_token_weights(token_weight_pairs_umt5base) lyrics_embeds = torch.tensor(list(map(lambda a: a[0], token_weight_pairs_lyrics[0]))).unsqueeze(0) return t5_out, None, {"conditioning_lyrics": lyrics_embeds} def load_sd(self, sd): return self.umt5base.load_sd(sd)