# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import math import torch import torch.nn as nn from einops import rearrange from comfy.ldm.modules.attention import optimized_attention from comfy.ldm.flux.layers import EmbedND from comfy.ldm.flux.math import apply_rope import comfy.ldm.common_dit import comfy.model_management import comfy.patcher_extension def sinusoidal_embedding_1d(dim, position): # preprocess assert dim % 2 == 0 half = dim // 2 position = position.type(torch.float32) # calculation sinusoid = torch.outer( position, torch.pow(10000, -torch.arange(half).to(position).div(half))) x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) return x class WanSelfAttention(nn.Module): def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, operation_settings={}): assert dim % num_heads == 0 super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.window_size = window_size self.qk_norm = qk_norm self.eps = eps # layers self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() def forward(self, x, freqs): r""" Args: x(Tensor): Shape [B, L, num_heads, C / num_heads] freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] """ b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim # query, key, value function def qkv_fn(x): q = self.norm_q(self.q(x)).view(b, s, n, d) k = self.norm_k(self.k(x)).view(b, s, n, d) v = self.v(x).view(b, s, n * d) return q, k, v q, k, v = qkv_fn(x) q, k = apply_rope(q, k, freqs) x = optimized_attention( q.view(b, s, n * d), k.view(b, s, n * d), v, heads=self.num_heads, ) x = self.o(x) return x class WanT2VCrossAttention(WanSelfAttention): def forward(self, x, context, **kwargs): r""" Args: x(Tensor): Shape [B, L1, C] context(Tensor): Shape [B, L2, C] """ # compute query, key, value q = self.norm_q(self.q(x)) k = self.norm_k(self.k(context)) v = self.v(context) # compute attention x = optimized_attention(q, k, v, heads=self.num_heads) x = self.o(x) return x class WanI2VCrossAttention(WanSelfAttention): def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, operation_settings={}): super().__init__(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings) self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) # self.alpha = nn.Parameter(torch.zeros((1, ))) self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() def forward(self, x, context, context_img_len): r""" Args: x(Tensor): Shape [B, L1, C] context(Tensor): Shape [B, L2, C] """ context_img = context[:, :context_img_len] context = context[:, context_img_len:] # compute query, key, value q = self.norm_q(self.q(x)) k = self.norm_k(self.k(context)) v = self.v(context) k_img = self.norm_k_img(self.k_img(context_img)) v_img = self.v_img(context_img) img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads) # compute attention x = optimized_attention(q, k, v, heads=self.num_heads) # output x = x + img_x x = self.o(x) return x WAN_CROSSATTENTION_CLASSES = { 't2v_cross_attn': WanT2VCrossAttention, 'i2v_cross_attn': WanI2VCrossAttention, } def repeat_e(e, x): repeats = 1 if e.size(1) > 1: repeats = x.size(1) // e.size(1) if repeats == 1: return e if repeats * e.size(1) == x.size(1): return torch.repeat_interleave(e, repeats, dim=1) else: return torch.repeat_interleave(e, repeats + 1, dim=1)[:, :x.size(1)] class WanAttentionBlock(nn.Module): def __init__(self, cross_attn_type, dim, ffn_dim, num_heads, window_size=(-1, -1), qk_norm=True, cross_attn_norm=False, eps=1e-6, operation_settings={}): super().__init__() self.dim = dim self.ffn_dim = ffn_dim self.num_heads = num_heads self.window_size = window_size self.qk_norm = qk_norm self.cross_attn_norm = cross_attn_norm self.eps = eps # layers self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings) self.norm3 = operation_settings.get("operations").LayerNorm( dim, eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity() self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps, operation_settings=operation_settings) self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.ffn = nn.Sequential( operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'), operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) # modulation self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) def forward( self, x, e, freqs, context, context_img_len=257, ): r""" Args: x(Tensor): Shape [B, L, C] e(Tensor): Shape [B, 6, C] freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] """ # assert e.dtype == torch.float32 if e.ndim < 4: e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1) else: e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e).unbind(2) # assert e[0].dtype == torch.float32 # self-attention y = self.self_attn( torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)), freqs) x = torch.addcmul(x, y, repeat_e(e[2], x)) # cross-attention & ffn x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len) y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x))) x = torch.addcmul(x, y, repeat_e(e[5], x)) return x class VaceWanAttentionBlock(WanAttentionBlock): def __init__( self, cross_attn_type, dim, ffn_dim, num_heads, window_size=(-1, -1), qk_norm=True, cross_attn_norm=False, eps=1e-6, block_id=0, operation_settings={} ): super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings) self.block_id = block_id if block_id == 0: self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) def forward(self, c, x, **kwargs): if self.block_id == 0: c = self.before_proj(c) + x c = super().forward(c, **kwargs) c_skip = self.after_proj(c) return c_skip, c class WanCamAdapter(nn.Module): def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1, operation_settings={}): super(WanCamAdapter, self).__init__() # Pixel Unshuffle: reduce spatial dimensions by a factor of 8 self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8) # Convolution: reduce spatial dimensions by a factor # of 2 (without overlap) self.conv = operation_settings.get("operations").Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) # Residual blocks for feature extraction self.residual_blocks = nn.Sequential( *[WanCamResidualBlock(out_dim, operation_settings = operation_settings) for _ in range(num_residual_blocks)] ) def forward(self, x): # Reshape to merge the frame dimension into batch bs, c, f, h, w = x.size() x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w) # Pixel Unshuffle operation x_unshuffled = self.pixel_unshuffle(x) # Convolution operation x_conv = self.conv(x_unshuffled) # Feature extraction with residual blocks out = self.residual_blocks(x_conv) # Reshape to restore original bf dimension out = out.view(bs, f, out.size(1), out.size(2), out.size(3)) # Permute dimensions to reorder (if needed), e.g., swap channels and feature frames out = out.permute(0, 2, 1, 3, 4) return out class WanCamResidualBlock(nn.Module): def __init__(self, dim, operation_settings={}): super(WanCamResidualBlock, self).__init__() self.conv1 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.relu = nn.ReLU(inplace=True) self.conv2 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) def forward(self, x): residual = x out = self.relu(self.conv1(x)) out = self.conv2(out) out += residual return out class Head(nn.Module): def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}): super().__init__() self.dim = dim self.out_dim = out_dim self.patch_size = patch_size self.eps = eps # layers out_dim = math.prod(patch_size) * out_dim self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) # modulation self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) def forward(self, x, e): r""" Args: x(Tensor): Shape [B, L1, C] e(Tensor): Shape [B, C] """ # assert e.dtype == torch.float32 if e.ndim < 3: e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1) else: e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e.unsqueeze(2)).unbind(2) x = (self.head(torch.addcmul(repeat_e(e[0], x), self.norm(x), 1 + repeat_e(e[1], x)))) return x class MLPProj(torch.nn.Module): def __init__(self, in_dim, out_dim, flf_pos_embed_token_number=None, operation_settings={}): super().__init__() self.proj = torch.nn.Sequential( operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) if flf_pos_embed_token_number is not None: self.emb_pos = nn.Parameter(torch.empty((1, flf_pos_embed_token_number, in_dim), device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) else: self.emb_pos = None def forward(self, image_embeds): if self.emb_pos is not None: image_embeds = image_embeds[:, :self.emb_pos.shape[1]] + comfy.model_management.cast_to(self.emb_pos[:, :image_embeds.shape[1]], dtype=image_embeds.dtype, device=image_embeds.device) clip_extra_context_tokens = self.proj(image_embeds) return clip_extra_context_tokens class WanModel(torch.nn.Module): r""" Wan diffusion backbone supporting both text-to-video and image-to-video. """ def __init__(self, model_type='t2v', patch_size=(1, 2, 2), text_len=512, in_dim=16, dim=2048, ffn_dim=8192, freq_dim=256, text_dim=4096, out_dim=16, num_heads=16, num_layers=32, window_size=(-1, -1), qk_norm=True, cross_attn_norm=True, eps=1e-6, flf_pos_embed_token_number=None, in_dim_ref_conv=None, image_model=None, device=None, dtype=None, operations=None, ): r""" Initialize the diffusion model backbone. Args: model_type (`str`, *optional*, defaults to 't2v'): Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) text_len (`int`, *optional*, defaults to 512): Fixed length for text embeddings in_dim (`int`, *optional*, defaults to 16): Input video channels (C_in) dim (`int`, *optional*, defaults to 2048): Hidden dimension of the transformer ffn_dim (`int`, *optional*, defaults to 8192): Intermediate dimension in feed-forward network freq_dim (`int`, *optional*, defaults to 256): Dimension for sinusoidal time embeddings text_dim (`int`, *optional*, defaults to 4096): Input dimension for text embeddings out_dim (`int`, *optional*, defaults to 16): Output video channels (C_out) num_heads (`int`, *optional*, defaults to 16): Number of attention heads num_layers (`int`, *optional*, defaults to 32): Number of transformer blocks window_size (`tuple`, *optional*, defaults to (-1, -1)): Window size for local attention (-1 indicates global attention) qk_norm (`bool`, *optional*, defaults to True): Enable query/key normalization cross_attn_norm (`bool`, *optional*, defaults to False): Enable cross-attention normalization eps (`float`, *optional*, defaults to 1e-6): Epsilon value for normalization layers """ super().__init__() self.dtype = dtype operation_settings = {"operations": operations, "device": device, "dtype": dtype} assert model_type in ['t2v', 'i2v'] self.model_type = model_type self.patch_size = patch_size self.text_len = text_len self.in_dim = in_dim self.dim = dim self.ffn_dim = ffn_dim self.freq_dim = freq_dim self.text_dim = text_dim self.out_dim = out_dim self.num_heads = num_heads self.num_layers = num_layers self.window_size = window_size self.qk_norm = qk_norm self.cross_attn_norm = cross_attn_norm self.eps = eps # embeddings self.patch_embedding = operations.Conv3d( in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=torch.float32) self.text_embedding = nn.Sequential( operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) self.time_embedding = nn.Sequential( operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) # blocks cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' self.blocks = nn.ModuleList([ WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings) for _ in range(num_layers) ]) # head self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings) d = dim // num_heads self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)]) if model_type == 'i2v': self.img_emb = MLPProj(1280, dim, flf_pos_embed_token_number=flf_pos_embed_token_number, operation_settings=operation_settings) else: self.img_emb = None if in_dim_ref_conv is not None: self.ref_conv = operations.Conv2d(in_dim_ref_conv, dim, kernel_size=patch_size[1:], stride=patch_size[1:], device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) else: self.ref_conv = None def forward_orig( self, x, t, context, clip_fea=None, freqs=None, transformer_options={}, **kwargs, ): r""" Forward pass through the diffusion model Args: x (Tensor): List of input video tensors with shape [B, C_in, F, H, W] t (Tensor): Diffusion timesteps tensor of shape [B] context (List[Tensor]): List of text embeddings each with shape [B, L, C] seq_len (`int`): Maximum sequence length for positional encoding clip_fea (Tensor, *optional*): CLIP image features for image-to-video mode y (List[Tensor], *optional*): Conditional video inputs for image-to-video mode, same shape as x Returns: List[Tensor]: List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] """ # embeddings x = self.patch_embedding(x.float()).to(x.dtype) grid_sizes = x.shape[2:] x = x.flatten(2).transpose(1, 2) # time embeddings e = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype)) e = e.reshape(t.shape[0], -1, e.shape[-1]) e0 = self.time_projection(e).unflatten(2, (6, self.dim)) full_ref = None if self.ref_conv is not None: full_ref = kwargs.get("reference_latent", None) if full_ref is not None: full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2) x = torch.concat((full_ref, x), dim=1) # context context = self.text_embedding(context) context_img_len = None if clip_fea is not None: if self.img_emb is not None: context_clip = self.img_emb(clip_fea) # bs x 257 x dim context = torch.concat([context_clip, context], dim=1) context_img_len = clip_fea.shape[-2] patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) for i, block in enumerate(self.blocks): if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) return out out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) x = out["img"] else: x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) # head x = self.head(x, e) if full_ref is not None: x = x[:, full_ref.shape[1]:] # unpatchify x = self.unpatchify(x, grid_sizes) return x def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None): patch_size = self.patch_size t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) w_len = ((w + (patch_size[2] // 2)) // patch_size[2]) if steps_t is None: steps_t = t_len if steps_h is None: steps_h = h_len if steps_w is None: steps_w = w_len img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype) img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1) img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1) img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1) img_ids = img_ids.reshape(1, -1, img_ids.shape[-1]) freqs = self.rope_embedder(img_ids).movedim(1, 2) return freqs def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs): return comfy.patcher_extension.WrapperExecutor.new_class_executor( self._forward, self, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) ).execute(x, timestep, context, clip_fea, time_dim_concat, transformer_options, **kwargs) def _forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs): bs, c, t, h, w = x.shape x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) t_len = t if time_dim_concat is not None: time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size) x = torch.cat([x, time_dim_concat], dim=2) t_len = x.shape[2] if self.ref_conv is not None and "reference_latent" in kwargs: t_len += 1 freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype) return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w] def unpatchify(self, x, grid_sizes): r""" Reconstruct video tensors from patch embeddings. Args: x (List[Tensor]): List of patchified features, each with shape [L, C_out * prod(patch_size)] grid_sizes (Tensor): Original spatial-temporal grid dimensions before patching, shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) Returns: List[Tensor]: Reconstructed video tensors with shape [L, C_out, F, H / 8, W / 8] """ c = self.out_dim u = x b = u.shape[0] u = u[:, :math.prod(grid_sizes)].view(b, *grid_sizes, *self.patch_size, c) u = torch.einsum('bfhwpqrc->bcfphqwr', u) u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)]) return u class VaceWanModel(WanModel): r""" Wan diffusion backbone supporting both text-to-video and image-to-video. """ def __init__(self, model_type='vace', patch_size=(1, 2, 2), text_len=512, in_dim=16, dim=2048, ffn_dim=8192, freq_dim=256, text_dim=4096, out_dim=16, num_heads=16, num_layers=32, window_size=(-1, -1), qk_norm=True, cross_attn_norm=True, eps=1e-6, flf_pos_embed_token_number=None, image_model=None, vace_layers=None, vace_in_dim=None, device=None, dtype=None, operations=None, ): super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations) operation_settings = {"operations": operations, "device": device, "dtype": dtype} # Vace if vace_layers is not None: self.vace_layers = vace_layers self.vace_in_dim = vace_in_dim # vace blocks self.vace_blocks = nn.ModuleList([ VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, self.cross_attn_norm, self.eps, block_id=i, operation_settings=operation_settings) for i in range(self.vace_layers) ]) self.vace_layers_mapping = {i: n for n, i in enumerate(range(0, self.num_layers, self.num_layers // self.vace_layers))} # vace patch embeddings self.vace_patch_embedding = operations.Conv3d( self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=torch.float32 ) def forward_orig( self, x, t, context, vace_context, vace_strength, clip_fea=None, freqs=None, transformer_options={}, **kwargs, ): # embeddings x = self.patch_embedding(x.float()).to(x.dtype) grid_sizes = x.shape[2:] x = x.flatten(2).transpose(1, 2) # time embeddings e = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) e0 = self.time_projection(e).unflatten(1, (6, self.dim)) # context context = self.text_embedding(context) context_img_len = None if clip_fea is not None: if self.img_emb is not None: context_clip = self.img_emb(clip_fea) # bs x 257 x dim context = torch.concat([context_clip, context], dim=1) context_img_len = clip_fea.shape[-2] orig_shape = list(vace_context.shape) vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:]) c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype) c = c.flatten(2).transpose(1, 2) c = list(c.split(orig_shape[0], dim=0)) # arguments x_orig = x patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) for i, block in enumerate(self.blocks): if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) return out out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) x = out["img"] else: x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) ii = self.vace_layers_mapping.get(i, None) if ii is not None: for iii in range(len(c)): c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) x += c_skip * vace_strength[iii] del c_skip # head x = self.head(x, e) # unpatchify x = self.unpatchify(x, grid_sizes) return x class CameraWanModel(WanModel): r""" Wan diffusion backbone supporting both text-to-video and image-to-video. """ def __init__(self, model_type='camera', patch_size=(1, 2, 2), text_len=512, in_dim=16, dim=2048, ffn_dim=8192, freq_dim=256, text_dim=4096, out_dim=16, num_heads=16, num_layers=32, window_size=(-1, -1), qk_norm=True, cross_attn_norm=True, eps=1e-6, flf_pos_embed_token_number=None, image_model=None, in_dim_control_adapter=24, device=None, dtype=None, operations=None, ): if model_type == 'camera': model_type = 'i2v' else: model_type = 't2v' super().__init__(model_type=model_type, patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations) operation_settings = {"operations": operations, "device": device, "dtype": dtype} self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings) def forward_orig( self, x, t, context, clip_fea=None, freqs=None, camera_conditions = None, transformer_options={}, **kwargs, ): # embeddings x = self.patch_embedding(x.float()).to(x.dtype) if self.control_adapter is not None and camera_conditions is not None: x = x + self.control_adapter(camera_conditions).to(x.dtype) grid_sizes = x.shape[2:] x = x.flatten(2).transpose(1, 2) # time embeddings e = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) e0 = self.time_projection(e).unflatten(1, (6, self.dim)) # context context = self.text_embedding(context) context_img_len = None if clip_fea is not None: if self.img_emb is not None: context_clip = self.img_emb(clip_fea) # bs x 257 x dim context = torch.concat([context_clip, context], dim=1) context_img_len = clip_fea.shape[-2] patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) for i, block in enumerate(self.blocks): if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) return out out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) x = out["img"] else: x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) # head x = self.head(x, e) # unpatchify x = self.unpatchify(x, grid_sizes) return x class CausalConv1d(nn.Module): def __init__(self, chan_in, chan_out, kernel_size=3, stride=1, dilation=1, pad_mode='replicate', operations=None, **kwargs): super().__init__() self.pad_mode = pad_mode padding = (kernel_size - 1, 0) # T self.time_causal_padding = padding self.conv = operations.Conv1d( chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs) def forward(self, x): x = torch.nn.functional.pad(x, self.time_causal_padding, mode=self.pad_mode) return self.conv(x) class MotionEncoder_tc(nn.Module): def __init__(self, in_dim: int, hidden_dim: int, num_heads=int, need_global=True, dtype=None, device=None, operations=None,): factory_kwargs = {"dtype": dtype, "device": device} super().__init__() self.num_heads = num_heads self.need_global = need_global self.conv1_local = CausalConv1d(in_dim, hidden_dim // 4 * num_heads, 3, stride=1, operations=operations, **factory_kwargs) if need_global: self.conv1_global = CausalConv1d( in_dim, hidden_dim // 4, 3, stride=1, operations=operations, **factory_kwargs) self.norm1 = operations.LayerNorm( hidden_dim // 4, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.act = nn.SiLU() self.conv2 = CausalConv1d(hidden_dim // 4, hidden_dim // 2, 3, stride=2, operations=operations, **factory_kwargs) self.conv3 = CausalConv1d(hidden_dim // 2, hidden_dim, 3, stride=2, operations=operations, **factory_kwargs) if need_global: self.final_linear = operations.Linear(hidden_dim, hidden_dim, **factory_kwargs) self.norm1 = operations.LayerNorm( hidden_dim // 4, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.norm2 = operations.LayerNorm( hidden_dim // 2, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.norm3 = operations.LayerNorm( hidden_dim, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs)) def forward(self, x): x = rearrange(x, 'b t c -> b c t') x_ori = x.clone() b, c, t = x.shape x = self.conv1_local(x) x = rearrange(x, 'b (n c) t -> (b n) t c', n=self.num_heads) x = self.norm1(x) x = self.act(x) x = rearrange(x, 'b t c -> b c t') x = self.conv2(x) x = rearrange(x, 'b c t -> b t c') x = self.norm2(x) x = self.act(x) x = rearrange(x, 'b t c -> b c t') x = self.conv3(x) x = rearrange(x, 'b c t -> b t c') x = self.norm3(x) x = self.act(x) x = rearrange(x, '(b n) t c -> b t n c', b=b) padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1) x = torch.cat([x, padding], dim=-2) x_local = x.clone() if not self.need_global: return x_local x = self.conv1_global(x_ori) x = rearrange(x, 'b c t -> b t c') x = self.norm1(x) x = self.act(x) x = rearrange(x, 'b t c -> b c t') x = self.conv2(x) x = rearrange(x, 'b c t -> b t c') x = self.norm2(x) x = self.act(x) x = rearrange(x, 'b t c -> b c t') x = self.conv3(x) x = rearrange(x, 'b c t -> b t c') x = self.norm3(x) x = self.act(x) x = self.final_linear(x) x = rearrange(x, '(b n) t c -> b t n c', b=b) return x, x_local class CausalAudioEncoder(nn.Module): def __init__(self, dim=5120, num_layers=25, out_dim=2048, video_rate=8, num_token=4, need_global=False, dtype=None, device=None, operations=None): super().__init__() self.encoder = MotionEncoder_tc( in_dim=dim, hidden_dim=out_dim, num_heads=num_token, need_global=need_global, dtype=dtype, device=device, operations=operations) weight = torch.empty((1, num_layers, 1, 1), dtype=dtype, device=device) self.weights = torch.nn.Parameter(weight) self.act = torch.nn.SiLU() def forward(self, features): # features B * num_layers * dim * video_length weights = self.act(comfy.model_management.cast_to(self.weights, dtype=features.dtype, device=features.device)) weights_sum = weights.sum(dim=1, keepdims=True) weighted_feat = ((features * weights) / weights_sum).sum( dim=1) # b dim f weighted_feat = weighted_feat.permute(0, 2, 1) # b f dim res = self.encoder(weighted_feat) # b f n dim return res # b f n dim class AdaLayerNorm(nn.Module): def __init__(self, embedding_dim, output_dim=None, norm_elementwise_affine=False, norm_eps=1e-5, dtype=None, device=None, operations=None): super().__init__() output_dim = output_dim or embedding_dim * 2 self.silu = nn.SiLU() self.linear = operations.Linear(embedding_dim, output_dim, dtype=dtype, device=device) self.norm = operations.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine, dtype=dtype, device=device) def forward(self, x, temb): temb = self.linear(self.silu(temb)) shift, scale = temb.chunk(2, dim=1) shift = shift[:, None, :] scale = scale[:, None, :] x = self.norm(x) * (1 + scale) + shift return x class AudioInjector_WAN(nn.Module): def __init__(self, dim=2048, num_heads=32, inject_layer=[0, 27], root_net=None, enable_adain=False, adain_dim=2048, adain_mode=None, dtype=None, device=None, operations=None): super().__init__() self.enable_adain = enable_adain self.adain_mode = adain_mode self.injected_block_id = {} audio_injector_id = 0 for inject_id in inject_layer: self.injected_block_id[inject_id] = audio_injector_id audio_injector_id += 1 self.injector = nn.ModuleList([ WanT2VCrossAttention( dim=dim, num_heads=num_heads, qk_norm=True, operation_settings={"operations": operations, "device": device, "dtype": dtype} ) for _ in range(audio_injector_id) ]) self.injector_pre_norm_feat = nn.ModuleList([ operations.LayerNorm( dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device ) for _ in range(audio_injector_id) ]) self.injector_pre_norm_vec = nn.ModuleList([ operations.LayerNorm( dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device ) for _ in range(audio_injector_id) ]) if enable_adain: self.injector_adain_layers = nn.ModuleList([ AdaLayerNorm( output_dim=dim * 2, embedding_dim=adain_dim, dtype=dtype, device=device, operations=operations) for _ in range(audio_injector_id) ]) if adain_mode != "attn_norm": self.injector_adain_output_layers = nn.ModuleList( [operations.Linear(dim, dim, dtype=dtype, device=device) for _ in range(audio_injector_id)]) def forward(self, x, block_id, audio_emb, audio_emb_global, seq_len): audio_attn_id = self.injected_block_id.get(block_id, None) if audio_attn_id is None: return x num_frames = audio_emb.shape[1] input_hidden_states = rearrange(x[:, :seq_len], "b (t n) c -> (b t) n c", t=num_frames) if self.enable_adain and self.adain_mode == "attn_norm": audio_emb_global = rearrange(audio_emb_global, "b t n c -> (b t) n c") adain_hidden_states = self.injector_adain_layers[audio_attn_id](input_hidden_states, temb=audio_emb_global[:, 0]) attn_hidden_states = adain_hidden_states else: attn_hidden_states = self.injector_pre_norm_feat[audio_attn_id](input_hidden_states) audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames) attn_audio_emb = audio_emb residual_out = self.injector[audio_attn_id](x=attn_hidden_states, context=attn_audio_emb) residual_out = rearrange( residual_out, "(b t) n c -> b (t n) c", t=num_frames) x[:, :seq_len] = x[:, :seq_len] + residual_out return x class FramePackMotioner(nn.Module): def __init__( self, inner_dim=1024, num_heads=16, # Used to indicate the number of heads in the backbone network; unrelated to this module's design zip_frame_buckets=[ 1, 2, 16 ], # Three numbers representing the number of frames sampled for patch operations from the nearest to the farthest frames drop_mode="drop", # If not "drop", it will use "padd", meaning padding instead of deletion dtype=None, device=None, operations=None): super().__init__() self.proj = operations.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2), dtype=dtype, device=device) self.proj_2x = operations.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4), dtype=dtype, device=device) self.proj_4x = operations.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8), dtype=dtype, device=device) self.zip_frame_buckets = zip_frame_buckets self.inner_dim = inner_dim self.num_heads = num_heads self.drop_mode = drop_mode def forward(self, motion_latents, rope_embedder, add_last_motion=2): lat_height, lat_width = motion_latents.shape[3], motion_latents.shape[4] padd_lat = torch.zeros(motion_latents.shape[0], 16, sum(self.zip_frame_buckets), lat_height, lat_width).to(device=motion_latents.device, dtype=motion_latents.dtype) overlap_frame = min(padd_lat.shape[2], motion_latents.shape[2]) if overlap_frame > 0: padd_lat[:, :, -overlap_frame:] = motion_latents[:, :, -overlap_frame:] if add_last_motion < 2 and self.drop_mode != "drop": zero_end_frame = sum(self.zip_frame_buckets[:len(self.zip_frame_buckets) - add_last_motion - 1]) padd_lat[:, :, -zero_end_frame:] = 0 clean_latents_4x, clean_latents_2x, clean_latents_post = padd_lat[:, :, -sum(self.zip_frame_buckets):, :, :].split(self.zip_frame_buckets[::-1], dim=2) # 16, 2 ,1 # patchfy clean_latents_post = self.proj(clean_latents_post).flatten(2).transpose(1, 2) clean_latents_2x = self.proj_2x(clean_latents_2x) l_2x_shape = clean_latents_2x.shape clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2) clean_latents_4x = self.proj_4x(clean_latents_4x) l_4x_shape = clean_latents_4x.shape clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2) if add_last_motion < 2 and self.drop_mode == "drop": clean_latents_post = clean_latents_post[:, : 0] if add_last_motion < 2 else clean_latents_post clean_latents_2x = clean_latents_2x[:, : 0] if add_last_motion < 1 else clean_latents_2x motion_lat = torch.cat([clean_latents_post, clean_latents_2x, clean_latents_4x], dim=1) rope_post = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-1, device=motion_latents.device, dtype=motion_latents.dtype) rope_2x = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-3, steps_h=l_2x_shape[-2], steps_w=l_2x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype) rope_4x = rope_embedder.rope_encode(4, lat_height, lat_width, t_start=-19, steps_h=l_4x_shape[-2], steps_w=l_4x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype) rope = torch.cat([rope_post, rope_2x, rope_4x], dim=1) return motion_lat, rope class WanModel_S2V(WanModel): def __init__(self, model_type='s2v', patch_size=(1, 2, 2), text_len=512, in_dim=16, dim=2048, ffn_dim=8192, freq_dim=256, text_dim=4096, out_dim=16, num_heads=16, num_layers=32, window_size=(-1, -1), qk_norm=True, cross_attn_norm=True, eps=1e-6, audio_dim=1024, num_audio_token=4, enable_adain=True, cond_dim=16, audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27, 30, 33, 36, 39], adain_mode="attn_norm", framepack_drop_mode="padd", image_model=None, device=None, dtype=None, operations=None, ): super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations) self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype) self.casual_audio_encoder = CausalAudioEncoder( dim=audio_dim, out_dim=self.dim, num_token=num_audio_token, need_global=enable_adain, dtype=dtype, device=device, operations=operations) if cond_dim > 0: self.cond_encoder = operations.Conv3d( cond_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=dtype) self.audio_injector = AudioInjector_WAN( dim=self.dim, num_heads=self.num_heads, inject_layer=audio_inject_layers, root_net=self, enable_adain=enable_adain, adain_dim=self.dim, adain_mode=adain_mode, dtype=dtype, device=device, operations=operations ) self.frame_packer = FramePackMotioner( inner_dim=self.dim, num_heads=self.num_heads, zip_frame_buckets=[1, 2, 16], drop_mode=framepack_drop_mode, dtype=dtype, device=device, operations=operations) def forward_orig( self, x, t, context, audio_embed=None, reference_latent=None, control_video=None, reference_motion=None, clip_fea=None, freqs=None, transformer_options={}, **kwargs, ): if audio_embed is not None: num_embeds = x.shape[-3] * 4 audio_emb_global, audio_emb = self.casual_audio_encoder(audio_embed[:, :, :, :num_embeds]) else: audio_emb = None # embeddings bs, _, time, height, width = x.shape x = self.patch_embedding(x.float()).to(x.dtype) if control_video is not None: x = x + self.cond_encoder(control_video) if t.ndim == 1: t = t.unsqueeze(1).repeat(1, x.shape[2]) grid_sizes = x.shape[2:] x = x.flatten(2).transpose(1, 2) seq_len = x.size(1) cond_mask_weight = comfy.model_management.cast_to(self.trainable_cond_mask.weight, dtype=x.dtype, device=x.device).unsqueeze(1).unsqueeze(1) x = x + cond_mask_weight[0] if reference_latent is not None: ref = self.patch_embedding(reference_latent.float()).to(x.dtype) ref = ref.flatten(2).transpose(1, 2) freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=max(30, time + 9), device=x.device, dtype=x.dtype) ref = ref + cond_mask_weight[1] x = torch.cat([x, ref], dim=1) freqs = torch.cat([freqs, freqs_ref], dim=1) t = torch.cat([t, torch.zeros((t.shape[0], reference_latent.shape[-3]), device=t.device, dtype=t.dtype)], dim=1) del ref, freqs_ref if reference_motion is not None: motion_encoded, freqs_motion = self.frame_packer(reference_motion, self) motion_encoded = motion_encoded + cond_mask_weight[2] x = torch.cat([x, motion_encoded], dim=1) freqs = torch.cat([freqs, freqs_motion], dim=1) t = torch.repeat_interleave(t, 2, dim=1) t = torch.cat([t, torch.zeros((t.shape[0], 3), device=t.device, dtype=t.dtype)], dim=1) del motion_encoded, freqs_motion # time embeddings e = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype)) e = e.reshape(t.shape[0], -1, e.shape[-1]) e0 = self.time_projection(e).unflatten(2, (6, self.dim)) # context context = self.text_embedding(context) patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) for i, block in enumerate(self.blocks): if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"]) return out out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) x = out["img"] else: x = block(x, e=e0, freqs=freqs, context=context) if audio_emb is not None: x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len) # head x = self.head(x, e) # unpatchify x = self.unpatchify(x, grid_sizes) return x