from __future__ import annotations from comfy_api.latest import io from comfy_extras.v3.nodes_model_merging import ModelMergeBlocks class ModelMergeSD1(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("time_embed.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("label_emb.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(12): inputs.append(io.Float.Input(f"input_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) for i in range(3): inputs.append(io.Float.Input(f"middle_block.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) for i in range(12): inputs.append(io.Float.Input(f"output_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("out.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeSD1_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeSDXL(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("time_embed.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("label_emb.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(9): inputs.append(io.Float.Input(f"input_blocks.{i}", default=1.0, min=0.0, max=1.0, step=0.01)) for i in range(3): inputs.append(io.Float.Input(f"middle_block.{i}", default=1.0, min=0.0, max=1.0, step=0.01)) for i in range(9): inputs.append(io.Float.Input(f"output_blocks.{i}", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("out.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeSDXL_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeSD3_2B(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("pos_embed.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("context_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("y_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(24): inputs.append(io.Float.Input(f"joint_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeSD3_2B_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeAuraflow(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("init_x_linear.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("positional_encoding", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("cond_seq_linear.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("register_tokens", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(4): inputs.append(io.Float.Input(f"double_layers.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) for i in range(32): inputs.append(io.Float.Input(f"single_layers.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.extend([ io.Float.Input("modF.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("final_linear.", default=1.0, min=0.0, max=1.0, step=0.01) ]) return io.Schema( node_id="ModelMergeAuraflow_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeFlux1(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("img_in.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("time_in.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("guidance_in", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("vector_in.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("txt_in.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(19): inputs.append(io.Float.Input(f"double_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) for i in range(38): inputs.append(io.Float.Input(f"single_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeFlux1_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeSD35_Large(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("pos_embed.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("context_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("y_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(38): inputs.append(io.Float.Input(f"joint_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeSD35_Large_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeMochiPreview(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("pos_frequencies.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t5_y_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t5_yproj.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(48): inputs.append(io.Float.Input(f"blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeMochiPreview_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeLTXV(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("patchify_proj.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("adaln_single.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("caption_projection.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(28): inputs.append(io.Float.Input(f"transformer_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.extend([ io.Float.Input("scale_shift_table", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("proj_out.", default=1.0, min=0.0, max=1.0, step=0.01) ]) return io.Schema( node_id="ModelMergeLTXV_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeCosmos7B(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("extra_pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("affline_norm.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(28): inputs.append(io.Float.Input(f"blocks.block{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeCosmos7B_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeCosmos14B(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("extra_pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("affline_norm.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(36): inputs.append(io.Float.Input(f"blocks.block{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeCosmos14B_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeWAN2_1(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("patch_embedding.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("time_embedding.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("time_projection.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("text_embedding.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("img_emb.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(40): inputs.append(io.Float.Input(f"blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("head.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeWAN2_1_V3", category="advanced/model_merging/model_specific", description="1.3B model has 30 blocks, 14B model has 40 blocks. Image to video model has the extra img_emb.", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeCosmosPredict2_2B(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedding_norm.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(28): inputs.append(io.Float.Input(f"blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeCosmosPredict2_2B_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) class ModelMergeCosmosPredict2_14B(ModelMergeBlocks): @classmethod def define_schema(cls): inputs = [ io.Model.Input("model1"), io.Model.Input("model2"), io.Float.Input("pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01), io.Float.Input("t_embedding_norm.", default=1.0, min=0.0, max=1.0, step=0.01) ] for i in range(36): inputs.append(io.Float.Input(f"blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01)) inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01)) return io.Schema( node_id="ModelMergeCosmosPredict2_14B_V3", category="advanced/model_merging/model_specific", inputs=inputs, outputs=[ io.Model.Output(), ] ) NODES_LIST: list[type[io.ComfyNode]] = [ ModelMergeAuraflow, ModelMergeCosmos14B, ModelMergeCosmos7B, ModelMergeCosmosPredict2_14B, ModelMergeCosmosPredict2_2B, ModelMergeFlux1, ModelMergeLTXV, ModelMergeMochiPreview, ModelMergeSD1, ModelMergeSD3_2B, ModelMergeSD35_Large, ModelMergeSDXL, ModelMergeWAN2_1, ]