from __future__ import annotations import torch import torch.nn.functional as F from comfy_api.latest import io class Mahiro(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="Mahiro_V3", display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。) _V3", category="_for_testing", description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.", is_experimental=True, inputs=[ io.Model.Input("model") ], outputs=[ io.Model.Output(display_name="patched_model") ] ) @classmethod def execute(cls, model): m = model.clone() def mahiro_normd(args): scale: float = args['cond_scale'] cond_p: torch.Tensor = args['cond_denoised'] uncond_p: torch.Tensor = args['uncond_denoised'] #naive leap leap = cond_p * scale #sim with uncond leap u_leap = uncond_p * scale cfg = args["denoised"] merge = (leap + cfg) / 2 normu = torch.sqrt(u_leap.abs()) * u_leap.sign() normm = torch.sqrt(merge.abs()) * merge.sign() sim = F.cosine_similarity(normu, normm).mean() simsc = 2 * (sim+1) wm = (simsc*cfg + (4-simsc)*leap) / 4 return wm m.set_model_sampler_post_cfg_function(mahiro_normd) return io.NodeOutput(m) NODES_LIST: list[type[io.ComfyNode]] = [ Mahiro, ]