import torch import torch.nn as nn from comfy.ldm.modules.attention import optimized_attention_masked class LayerNormConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None): super().__init__() self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype) self.layer_norm = operations.LayerNorm(out_channels, elementwise_affine=True, device=device, dtype=dtype) def forward(self, x): x = self.conv(x) return torch.nn.functional.gelu(self.layer_norm(x.transpose(-2, -1)).transpose(-2, -1)) class ConvFeatureEncoder(nn.Module): def __init__(self, conv_dim, dtype=None, device=None, operations=None): super().__init__() self.conv_layers = nn.ModuleList([ LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations), LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations), LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations), LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations), LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations), LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations), LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations), ]) def forward(self, x): x = x.unsqueeze(1) for conv in self.conv_layers: x = conv(x) return x.transpose(1, 2) class FeatureProjection(nn.Module): def __init__(self, conv_dim, embed_dim, dtype=None, device=None, operations=None): super().__init__() self.layer_norm = operations.LayerNorm(conv_dim, eps=1e-05, device=device, dtype=dtype) self.projection = operations.Linear(conv_dim, embed_dim, device=device, dtype=dtype) def forward(self, x): x = self.layer_norm(x) x = self.projection(x) return x class PositionalConvEmbedding(nn.Module): def __init__(self, embed_dim=768, kernel_size=128, groups=16): super().__init__() self.conv = nn.Conv1d( embed_dim, embed_dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=groups, ) self.conv = torch.nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2) self.activation = nn.GELU() def forward(self, x): x = x.transpose(1, 2) x = self.conv(x)[:, :, :-1] x = self.activation(x) x = x.transpose(1, 2) return x class TransformerEncoder(nn.Module): def __init__( self, embed_dim=768, num_heads=12, num_layers=12, mlp_ratio=4.0, dtype=None, device=None, operations=None ): super().__init__() self.pos_conv_embed = PositionalConvEmbedding(embed_dim=embed_dim) self.layers = nn.ModuleList([ TransformerEncoderLayer( embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, device=device, dtype=dtype, operations=operations ) for _ in range(num_layers) ]) self.layer_norm = operations.LayerNorm(embed_dim, eps=1e-05, device=device, dtype=dtype) def forward(self, x, mask=None): x = x + self.pos_conv_embed(x) all_x = () for layer in self.layers: all_x += (x,) x = layer(x, mask) x = self.layer_norm(x) all_x += (x,) return x, all_x class Attention(nn.Module): def __init__(self, embed_dim, num_heads, bias=True, dtype=None, device=None, operations=None): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.k_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) self.v_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) self.q_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) self.out_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) def forward(self, x, mask=None): assert (mask is None) # TODO? q = self.q_proj(x) k = self.k_proj(x) v = self.v_proj(x) out = optimized_attention_masked(q, k, v, self.num_heads) return self.out_proj(out) class FeedForward(nn.Module): def __init__(self, embed_dim, mlp_ratio, dtype=None, device=None, operations=None): super().__init__() self.intermediate_dense = operations.Linear(embed_dim, int(embed_dim * mlp_ratio), device=device, dtype=dtype) self.output_dense = operations.Linear(int(embed_dim * mlp_ratio), embed_dim, device=device, dtype=dtype) def forward(self, x): x = self.intermediate_dense(x) x = torch.nn.functional.gelu(x) x = self.output_dense(x) return x class TransformerEncoderLayer(nn.Module): def __init__( self, embed_dim=768, num_heads=12, mlp_ratio=4.0, dtype=None, device=None, operations=None ): super().__init__() self.attention = Attention(embed_dim, num_heads, device=device, dtype=dtype, operations=operations) self.layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype) self.feed_forward = FeedForward(embed_dim, mlp_ratio, device=device, dtype=dtype, operations=operations) self.final_layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype) def forward(self, x, mask=None): residual = x x = self.layer_norm(x) x = self.attention(x, mask=mask) x = residual + x x = x + self.feed_forward(self.final_layer_norm(x)) return x class Wav2Vec2Model(nn.Module): """Complete Wav2Vec 2.0 model.""" def __init__( self, embed_dim=1024, final_dim=256, num_heads=16, num_layers=24, dtype=None, device=None, operations=None ): super().__init__() conv_dim = 512 self.feature_extractor = ConvFeatureEncoder(conv_dim, device=device, dtype=dtype, operations=operations) self.feature_projection = FeatureProjection(conv_dim, embed_dim, device=device, dtype=dtype, operations=operations) self.masked_spec_embed = nn.Parameter(torch.empty(embed_dim, device=device, dtype=dtype)) self.encoder = TransformerEncoder( embed_dim=embed_dim, num_heads=num_heads, num_layers=num_layers, device=device, dtype=dtype, operations=operations ) def forward(self, x, mask_time_indices=None, return_dict=False): x = torch.mean(x, dim=1) x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7) features = self.feature_extractor(x) features = self.feature_projection(features) batch_size, seq_len, _ = features.shape x, all_x = self.encoder(features) return x, all_x