* Support for async execution functions
This commit adds support for node execution functions defined as async. When
a node's execution function is defined as async, we can continue
executing other nodes while it is processing.
Standard uses of `await` should "just work", but people will still have
to be careful if they spawn actual threads. Because torch doesn't really
have async/await versions of functions, this won't particularly help
with most locally-executing nodes, but it does work for e.g. web
requests to other machines.
In addition to the execute function, the `VALIDATE_INPUTS` and
`check_lazy_status` functions can also be defined as async, though we'll
only resolve one node at a time right now for those.
* Add the execution model tests to CI
* Add a missing file
It looks like this got caught by .gitignore? There's probably a better
place to put it, but I'm not sure what that is.
* Add the websocket library for automated tests
* Add additional tests for async error cases
Also fixes one bug that was found when an async function throws an error
after being scheduled on a task.
* Add a feature flags message to reduce bandwidth
We now only send 1 preview message of the latest type the client can
support.
We'll add a console warning when the client fails to send a feature
flags message at some point in the future.
* Add async tests to CI
* Don't actually add new tests in this PR
Will do it in a separate PR
* Resolve unit test in GPU-less runner
* Just remove the tests that GHA can't handle
* Change line endings to UNIX-style
* Avoid loading model_management.py so early
Because model_management.py has a top-level `logging.info`, we have to
be careful not to import that file before we call `setup_logging`. If we
do, we end up having the default logging handler registered in addition
to our custom one.
This commit fixes the temporal tile size calculation, and removes
a redundant tile at the end of the range when its elements are
completely covered by the previous tile.
Co-authored-by: Andrew Kvochko <a.kvochko@lightricks.com>
* fix attention OOM in xformers
* allow passing attention mask in flux attention
* allow an attn_mask in flux
* attn masks can be done using replace patches instead of a separate dict
* fix return types
* fix return order
* enumerate
* patch the right keys
* arg names
* fix a silly bug
* fix xformers masks
* replace match with if, elif, else
* mask with image_ref_size
* remove unused import
* remove unused import 2
* fix pytorch/xformers attention
This corrects a weird inconsistency with skip_reshape.
It also allows masks of various shapes to be passed, which will be
automtically expanded (in a memory-efficient way) to a size that is
compatible with xformers or pytorch sdpa respectively.
* fix mask shapes
To use:
"Load CLIP" node with t5xxl + type mochi
"Load Diffusion Model" node with the mochi dit file.
"Load VAE" with the mochi vae file.
EmptyMochiLatentVideo node for the latent.
euler + linear_quadratic in the KSampler node.