mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
fixes, corrections; ported MaskPreview, WebcamCapture and LoadImageOutput nodes
This commit is contained in:
parent
1eb1a44883
commit
fefb24cc33
@ -209,8 +209,6 @@ class WidgetInputV3(InputV3):
|
||||
})
|
||||
|
||||
def get_io_type_V1(self):
|
||||
if isinstance(self, Combo.Input):
|
||||
return self.as_value_type_v1()
|
||||
return self.widgetType if self.widgetType is not None else super().get_io_type_V1()
|
||||
|
||||
|
||||
@ -411,18 +409,7 @@ class Combo(ComfyType):
|
||||
self.remote = remote
|
||||
self.default: str
|
||||
|
||||
def as_dict_V1(self):
|
||||
return super().as_dict_V1() | prune_dict({
|
||||
"multiselect": self.multiselect,
|
||||
"options": self.options,
|
||||
"control_after_generate": self.control_after_generate,
|
||||
"image_upload": self.image_upload,
|
||||
"image_folder": self.image_folder.value if self.image_folder else None,
|
||||
"content_types": self.content_types if self.content_types else None,
|
||||
"remote": self.remote.as_dict() if self.remote else None,
|
||||
})
|
||||
|
||||
def as_value_type_v1(self):
|
||||
def get_io_type_V1(self):
|
||||
if getattr(self, "image_folder"):
|
||||
if self.image_folder == FolderType.input:
|
||||
target_dir = folder_paths.get_input_directory()
|
||||
@ -434,6 +421,18 @@ class Combo(ComfyType):
|
||||
if self.content_types is None:
|
||||
return files
|
||||
return sorted(folder_paths.filter_files_content_types(files, self.content_types))
|
||||
return super().get_io_type_V1()
|
||||
|
||||
def as_dict_V1(self):
|
||||
return super().as_dict_V1() | prune_dict({
|
||||
"multiselect": self.multiselect,
|
||||
"options": self.options,
|
||||
"control_after_generate": self.control_after_generate,
|
||||
"image_upload": self.image_upload,
|
||||
"image_folder": self.image_folder.value if self.image_folder else None,
|
||||
"content_types": self.content_types if self.content_types else None,
|
||||
"remote": self.remote.as_dict() if self.remote else None,
|
||||
})
|
||||
|
||||
|
||||
@comfytype(io_type="COMBO")
|
||||
@ -463,6 +462,20 @@ class MultiCombo(ComfyType):
|
||||
class Image(ComfyTypeIO):
|
||||
Type = torch.Tensor
|
||||
|
||||
@comfytype(io_type="WEBCAM")
|
||||
class Webcam(ComfyTypeIO):
|
||||
Type = str
|
||||
|
||||
class Input(WidgetInputV3):
|
||||
"""Webcam input."""
|
||||
Type = str
|
||||
def __init__(
|
||||
self, id: str, display_name: str=None, optional=False,
|
||||
tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None
|
||||
):
|
||||
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, self.io_type)
|
||||
|
||||
|
||||
@comfytype(io_type="MASK")
|
||||
class Mask(ComfyTypeIO):
|
||||
Type = torch.Tensor
|
||||
@ -1121,7 +1134,7 @@ class ComfyNodeV3:
|
||||
type_clone: type[ComfyNodeV3] = type(f"CLEAN_{c_type.__name__}", c_type.__bases__, {})
|
||||
# TODO: what parameters should be carried over?
|
||||
type_clone.SCHEMA = c_type.SCHEMA
|
||||
type_clone.hidden = HiddenHolder.from_dict(hidden_inputs)
|
||||
type_clone.hidden = HiddenHolder.from_dict(hidden_inputs) if hidden_inputs is not None else None
|
||||
# TODO: add anything we would want to expose inside node's execute function
|
||||
return type_clone
|
||||
|
||||
|
@ -3,10 +3,7 @@ import scipy.ndimage
|
||||
import torch
|
||||
import comfy.utils
|
||||
import node_helpers
|
||||
import folder_paths
|
||||
import random
|
||||
|
||||
import nodes
|
||||
from nodes import MAX_RESOLUTION
|
||||
|
||||
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
|
||||
@ -365,30 +362,6 @@ class ThresholdMask:
|
||||
mask = (mask > value).float()
|
||||
return (mask,)
|
||||
|
||||
# Mask Preview - original implement from
|
||||
# https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81
|
||||
# upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
|
||||
class MaskPreview(nodes.SaveImage):
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_temp_directory()
|
||||
self.type = "temp"
|
||||
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
||||
self.compress_level = 4
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {"mask": ("MASK",), },
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "mask"
|
||||
|
||||
def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
||||
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentCompositeMasked": LatentCompositeMasked,
|
||||
@ -403,10 +376,8 @@ NODE_CLASS_MAPPINGS = {
|
||||
"FeatherMask": FeatherMask,
|
||||
"GrowMask": GrowMask,
|
||||
"ThresholdMask": ThresholdMask,
|
||||
"MaskPreview": MaskPreview
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageToMask": "Convert Image to Mask",
|
||||
"MaskToImage": "Convert Mask to Image",
|
||||
}
|
||||
|
@ -1,37 +0,0 @@
|
||||
import nodes
|
||||
import folder_paths
|
||||
|
||||
MAX_RESOLUTION = nodes.MAX_RESOLUTION
|
||||
|
||||
|
||||
class WebcamCapture(nodes.LoadImage):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("WEBCAM", {}),
|
||||
"width": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"capture_on_queue": ("BOOLEAN", {"default": True}),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "load_capture"
|
||||
|
||||
CATEGORY = "image"
|
||||
|
||||
def load_capture(self, image, **kwargs):
|
||||
return super().load_image(folder_paths.get_annotated_filepath(image))
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(cls, image, width, height, capture_on_queue):
|
||||
return super().IS_CHANGED(image)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"WebcamCapture": WebcamCapture,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"WebcamCapture": "Webcam Capture",
|
||||
}
|
283
comfy_extras/v3/nodes_images.py
Normal file
283
comfy_extras/v3/nodes_images.py
Normal file
@ -0,0 +1,283 @@
|
||||
import json
|
||||
import os
|
||||
import torch
|
||||
import hashlib
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image, ImageOps, ImageSequence
|
||||
from PIL.PngImagePlugin import PngInfo
|
||||
|
||||
from comfy_api.v3 import io, ui
|
||||
from comfy.cli_args import args
|
||||
import folder_paths
|
||||
import node_helpers
|
||||
|
||||
|
||||
class SaveImage(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="SaveImage",
|
||||
display_name="Save Image",
|
||||
description="Saves the input images to your ComfyUI output directory.",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Image.Input(
|
||||
"images",
|
||||
display_name="images",
|
||||
tooltip="The images to save.",
|
||||
),
|
||||
io.String.Input(
|
||||
"filename_prefix",
|
||||
default="ComfyUI",
|
||||
tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
|
||||
),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, images, filename_prefix="ComfyUI"):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
"", folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
|
||||
)
|
||||
results = []
|
||||
for (batch_number, image) in enumerate(images):
|
||||
i = 255. * image.cpu().numpy()
|
||||
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
||||
metadata = None
|
||||
if not args.disable_metadata:
|
||||
metadata = PngInfo()
|
||||
if cls.hidden.prompt is not None:
|
||||
metadata.add_text("prompt", json.dumps(cls.hidden.prompt))
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
metadata.add_text(x, json.dumps(cls.hidden.extra_pnginfo[x]))
|
||||
|
||||
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
||||
file = f"{filename_with_batch_num}_{counter:05}_.png"
|
||||
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
|
||||
results.append({
|
||||
"filename": file,
|
||||
"subfolder": subfolder,
|
||||
"type": "output",
|
||||
})
|
||||
counter += 1
|
||||
|
||||
return io.NodeOutput(ui={"images": results})
|
||||
|
||||
|
||||
class PreviewImage(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="PreviewImage",
|
||||
display_name="Preview Image",
|
||||
description="Preview the input images.",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Image.Input(
|
||||
"images",
|
||||
display_name="images",
|
||||
tooltip="The images to preview.",
|
||||
),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, images):
|
||||
return io.NodeOutput(ui=ui.PreviewImage(images))
|
||||
|
||||
|
||||
class LoadImage(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="LoadImage",
|
||||
display_name="Load Image",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
"image",
|
||||
display_name="image",
|
||||
image_upload=True,
|
||||
image_folder=io.FolderType.input,
|
||||
content_types=["image"],
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(
|
||||
"IMAGE",
|
||||
),
|
||||
io.Mask.Output(
|
||||
"MASK",
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image) -> io.NodeOutput:
|
||||
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
|
||||
|
||||
output_images = []
|
||||
output_masks = []
|
||||
w, h = None, None
|
||||
|
||||
excluded_formats = ['MPO']
|
||||
|
||||
for i in ImageSequence.Iterator(img):
|
||||
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
||||
|
||||
if i.mode == 'I':
|
||||
i = i.point(lambda i: i * (1 / 255))
|
||||
image = i.convert("RGB")
|
||||
|
||||
if len(output_images) == 0:
|
||||
w = image.size[0]
|
||||
h = image.size[1]
|
||||
|
||||
if image.size[0] != w or image.size[1] != h:
|
||||
continue
|
||||
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = torch.from_numpy(image)[None,]
|
||||
if 'A' in i.getbands():
|
||||
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
elif i.mode == 'P' and 'transparency' in i.info:
|
||||
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
else:
|
||||
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
||||
output_images.append(image)
|
||||
output_masks.append(mask.unsqueeze(0))
|
||||
|
||||
if len(output_images) > 1 and img.format not in excluded_formats:
|
||||
output_image = torch.cat(output_images, dim=0)
|
||||
output_mask = torch.cat(output_masks, dim=0)
|
||||
else:
|
||||
output_image = output_images[0]
|
||||
output_mask = output_masks[0]
|
||||
|
||||
return io.NodeOutput(output_image, output_mask)
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, image):
|
||||
image_path = folder_paths.get_annotated_filepath(image)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, 'rb') as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(s, image):
|
||||
if not folder_paths.exists_annotated_filepath(image):
|
||||
return "Invalid image file: {}".format(image)
|
||||
return True
|
||||
|
||||
|
||||
class LoadImageOutput(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="LoadImageOutput",
|
||||
display_name="Load Image (from Outputs)",
|
||||
description="Load an image from the output folder. "
|
||||
"When the refresh button is clicked, the node will update the image list "
|
||||
"and automatically select the first image, allowing for easy iteration.",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
"image",
|
||||
display_name="image",
|
||||
image_upload=True,
|
||||
image_folder=io.FolderType.output,
|
||||
content_types=["image"],
|
||||
remote=io.RemoteOptions(
|
||||
route="/internal/files/output",
|
||||
refresh_button=True,
|
||||
control_after_refresh="first",
|
||||
),
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(
|
||||
"IMAGE",
|
||||
),
|
||||
io.Mask.Output(
|
||||
"MASK",
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image) -> io.NodeOutput:
|
||||
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
|
||||
|
||||
output_images = []
|
||||
output_masks = []
|
||||
w, h = None, None
|
||||
|
||||
excluded_formats = ['MPO']
|
||||
|
||||
for i in ImageSequence.Iterator(img):
|
||||
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
||||
|
||||
if i.mode == 'I':
|
||||
i = i.point(lambda i: i * (1 / 255))
|
||||
image = i.convert("RGB")
|
||||
|
||||
if len(output_images) == 0:
|
||||
w = image.size[0]
|
||||
h = image.size[1]
|
||||
|
||||
if image.size[0] != w or image.size[1] != h:
|
||||
continue
|
||||
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = torch.from_numpy(image)[None,]
|
||||
if 'A' in i.getbands():
|
||||
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
elif i.mode == 'P' and 'transparency' in i.info:
|
||||
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
else:
|
||||
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
||||
output_images.append(image)
|
||||
output_masks.append(mask.unsqueeze(0))
|
||||
|
||||
if len(output_images) > 1 and img.format not in excluded_formats:
|
||||
output_image = torch.cat(output_images, dim=0)
|
||||
output_mask = torch.cat(output_masks, dim=0)
|
||||
else:
|
||||
output_image = output_images[0]
|
||||
output_mask = output_masks[0]
|
||||
|
||||
return io.NodeOutput(output_image, output_mask)
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, image):
|
||||
image_path = folder_paths.get_annotated_filepath(image)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, 'rb') as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(s, image):
|
||||
if not folder_paths.exists_annotated_filepath(image):
|
||||
return "Invalid image file: {}".format(image)
|
||||
return True
|
||||
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNodeV3]] = [
|
||||
SaveImage,
|
||||
PreviewImage,
|
||||
LoadImage,
|
||||
LoadImageOutput,
|
||||
]
|
32
comfy_extras/v3/nodes_mask.py
Normal file
32
comfy_extras/v3/nodes_mask.py
Normal file
@ -0,0 +1,32 @@
|
||||
from comfy_api.v3 import io, ui
|
||||
|
||||
|
||||
class MaskPreview(io.ComfyNodeV3):
|
||||
"""Mask Preview - original implement in ComfyUI_essentials.
|
||||
|
||||
https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81
|
||||
Upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="MaskPreview",
|
||||
display_name="Convert Mask to Image",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Mask.Input(
|
||||
"masks",
|
||||
display_name="masks",
|
||||
),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, masks):
|
||||
return io.NodeOutput(ui=ui.PreviewMask(masks))
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNodeV3]] = [MaskPreview]
|
118
comfy_extras/v3/nodes_webcam.py
Normal file
118
comfy_extras/v3/nodes_webcam.py
Normal file
@ -0,0 +1,118 @@
|
||||
import hashlib
|
||||
import torch
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image, ImageOps, ImageSequence
|
||||
|
||||
from comfy_api.v3 import io
|
||||
import nodes
|
||||
import folder_paths
|
||||
import node_helpers
|
||||
|
||||
|
||||
MAX_RESOLUTION = nodes.MAX_RESOLUTION
|
||||
|
||||
|
||||
class WebcamCapture(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="WebcamCapture",
|
||||
display_name="Webcam Capture",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Webcam.Input(
|
||||
"image",
|
||||
display_name="image",
|
||||
),
|
||||
io.Int.Input(
|
||||
"width",
|
||||
display_name="width",
|
||||
default=0,
|
||||
min=0,
|
||||
max=MAX_RESOLUTION,
|
||||
step=1,
|
||||
),
|
||||
io.Int.Input(
|
||||
"height",
|
||||
display_name="height",
|
||||
default=0,
|
||||
min=0,
|
||||
max=MAX_RESOLUTION,
|
||||
step=1,
|
||||
),
|
||||
io.Boolean.Input(
|
||||
"capture_on_queue",
|
||||
default=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(
|
||||
"IMAGE",
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, **kwargs) -> io.NodeOutput:
|
||||
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
|
||||
|
||||
output_images = []
|
||||
output_masks = []
|
||||
w, h = None, None
|
||||
|
||||
excluded_formats = ['MPO']
|
||||
|
||||
for i in ImageSequence.Iterator(img):
|
||||
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
||||
|
||||
if i.mode == 'I':
|
||||
i = i.point(lambda i: i * (1 / 255))
|
||||
image = i.convert("RGB")
|
||||
|
||||
if len(output_images) == 0:
|
||||
w = image.size[0]
|
||||
h = image.size[1]
|
||||
|
||||
if image.size[0] != w or image.size[1] != h:
|
||||
continue
|
||||
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = torch.from_numpy(image)[None,]
|
||||
if 'A' in i.getbands():
|
||||
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
elif i.mode == 'P' and 'transparency' in i.info:
|
||||
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
else:
|
||||
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
||||
output_images.append(image)
|
||||
output_masks.append(mask.unsqueeze(0))
|
||||
|
||||
if len(output_images) > 1 and img.format not in excluded_formats:
|
||||
output_image = torch.cat(output_images, dim=0)
|
||||
output_mask = torch.cat(output_masks, dim=0)
|
||||
else:
|
||||
output_image = output_images[0]
|
||||
output_mask = output_masks[0]
|
||||
|
||||
return io.NodeOutput(output_image, output_mask)
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, image, width, height, capture_on_queue):
|
||||
image_path = folder_paths.get_annotated_filepath(image)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, 'rb') as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(s, image):
|
||||
if not folder_paths.exists_annotated_filepath(image):
|
||||
return "Invalid image file: {}".format(image)
|
||||
return True
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNodeV3]] = [WebcamCapture]
|
@ -321,7 +321,10 @@ def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb
|
||||
elif isinstance(r, NodeOutput):
|
||||
# V3
|
||||
if r.ui is not None:
|
||||
uis.append(r.ui.as_dict())
|
||||
if isinstance(r.ui, dict):
|
||||
uis.append(r.ui)
|
||||
else:
|
||||
uis.append(r.ui.as_dict())
|
||||
if r.expand is not None:
|
||||
has_subgraph = True
|
||||
new_graph = r.expand
|
||||
|
213
nodes.py
213
nodes.py
@ -8,11 +8,9 @@ import hashlib
|
||||
import traceback
|
||||
import math
|
||||
import time
|
||||
import random
|
||||
import logging
|
||||
|
||||
from PIL import Image, ImageOps, ImageSequence
|
||||
from PIL.PngImagePlugin import PngInfo
|
||||
from PIL import Image, ImageOps
|
||||
|
||||
import numpy as np
|
||||
import safetensors.torch
|
||||
@ -1551,181 +1549,6 @@ class KSamplerAdvanced:
|
||||
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
|
||||
|
||||
|
||||
class SaveImage(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="SaveImage",
|
||||
display_name="Save Image",
|
||||
description="Saves the input images to your ComfyUI output directory.",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Image.Input(
|
||||
"images",
|
||||
display_name="images",
|
||||
tooltip="The images to save.",
|
||||
),
|
||||
io.String.Input(
|
||||
"filename_prefix",
|
||||
default="ComfyUI",
|
||||
tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
|
||||
),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
self.type = "output"
|
||||
self.prefix_append = ""
|
||||
self.compress_level = 4
|
||||
|
||||
def execute(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
filename_prefix += self.prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
||||
results = list()
|
||||
for (batch_number, image) in enumerate(images):
|
||||
i = 255. * image.cpu().numpy()
|
||||
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
||||
metadata = None
|
||||
if not args.disable_metadata:
|
||||
metadata = PngInfo()
|
||||
if prompt is not None:
|
||||
metadata.add_text("prompt", json.dumps(prompt))
|
||||
if extra_pnginfo is not None:
|
||||
for x in extra_pnginfo:
|
||||
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
||||
|
||||
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
||||
file = f"{filename_with_batch_num}_{counter:05}_.png"
|
||||
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
|
||||
results.append({
|
||||
"filename": file,
|
||||
"subfolder": subfolder,
|
||||
"type": self.type,
|
||||
})
|
||||
counter += 1
|
||||
|
||||
return { "ui": { "images": results } }
|
||||
|
||||
|
||||
class PreviewImage(SaveImage):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="PreviewImage",
|
||||
display_name="Preview Image",
|
||||
description="Preview the input images.",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Image.Input(
|
||||
"images",
|
||||
display_name="images",
|
||||
tooltip="The images to preview.",
|
||||
),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.output_dir = folder_paths.get_temp_directory()
|
||||
self.type = "temp"
|
||||
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
||||
self.compress_level = 1
|
||||
|
||||
|
||||
class LoadImage(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="LoadImage",
|
||||
display_name="Load Image",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
"image",
|
||||
display_name="image",
|
||||
image_upload=True,
|
||||
image_folder=io.FolderType.input,
|
||||
content_types=["image"],
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(
|
||||
"IMAGE",
|
||||
),
|
||||
io.Mask.Output(
|
||||
"MASK",
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image) -> io.NodeOutput:
|
||||
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
|
||||
|
||||
output_images = []
|
||||
output_masks = []
|
||||
w, h = None, None
|
||||
|
||||
excluded_formats = ['MPO']
|
||||
|
||||
for i in ImageSequence.Iterator(img):
|
||||
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
||||
|
||||
if i.mode == 'I':
|
||||
i = i.point(lambda i: i * (1 / 255))
|
||||
image = i.convert("RGB")
|
||||
|
||||
if len(output_images) == 0:
|
||||
w = image.size[0]
|
||||
h = image.size[1]
|
||||
|
||||
if image.size[0] != w or image.size[1] != h:
|
||||
continue
|
||||
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = torch.from_numpy(image)[None,]
|
||||
if 'A' in i.getbands():
|
||||
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
elif i.mode == 'P' and 'transparency' in i.info:
|
||||
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
else:
|
||||
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
||||
output_images.append(image)
|
||||
output_masks.append(mask.unsqueeze(0))
|
||||
|
||||
if len(output_images) > 1 and img.format not in excluded_formats:
|
||||
output_image = torch.cat(output_images, dim=0)
|
||||
output_mask = torch.cat(output_masks, dim=0)
|
||||
else:
|
||||
output_image = output_images[0]
|
||||
output_mask = output_masks[0]
|
||||
|
||||
return io.NodeOutput(output_image, output_mask)
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, image):
|
||||
image_path = folder_paths.get_annotated_filepath(image)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, 'rb') as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(s, image):
|
||||
if not folder_paths.exists_annotated_filepath(image):
|
||||
return "Invalid image file: {}".format(image)
|
||||
|
||||
return True
|
||||
|
||||
|
||||
class LoadImageMask:
|
||||
_color_channels = ["alpha", "red", "green", "blue"]
|
||||
@classmethod
|
||||
@ -1776,28 +1599,6 @@ class LoadImageMask:
|
||||
return True
|
||||
|
||||
|
||||
class LoadImageOutput(LoadImage):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("COMBO", {
|
||||
"image_upload": True,
|
||||
"image_folder": "output",
|
||||
"remote": {
|
||||
"route": "/internal/files/output",
|
||||
"refresh_button": True,
|
||||
"control_after_refresh": "first",
|
||||
},
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
DESCRIPTION = "Load an image from the output folder. When the refresh button is clicked, the node will update the image list and automatically select the first image, allowing for easy iteration."
|
||||
EXPERIMENTAL = True
|
||||
FUNCTION = "load_image"
|
||||
|
||||
|
||||
class ImageScale:
|
||||
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
||||
crop_methods = ["disabled", "center"]
|
||||
@ -1980,11 +1781,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"LatentUpscaleBy": LatentUpscaleBy,
|
||||
"LatentFromBatch": LatentFromBatch,
|
||||
"RepeatLatentBatch": RepeatLatentBatch,
|
||||
"SaveImage": SaveImage,
|
||||
"PreviewImage": PreviewImage,
|
||||
"LoadImage": LoadImage,
|
||||
"LoadImageMask": LoadImageMask,
|
||||
"LoadImageOutput": LoadImageOutput,
|
||||
"ImageScale": ImageScale,
|
||||
"ImageScaleBy": ImageScaleBy,
|
||||
"ImageInvert": ImageInvert,
|
||||
@ -2081,11 +1878,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"LatentFromBatch" : "Latent From Batch",
|
||||
"RepeatLatentBatch": "Repeat Latent Batch",
|
||||
# Image
|
||||
"SaveImage": "Save Image",
|
||||
"PreviewImage": "Preview Image",
|
||||
"LoadImage": "Load Image",
|
||||
"LoadImageMask": "Load Image (as Mask)",
|
||||
"LoadImageOutput": "Load Image (from Outputs)",
|
||||
"ImageScale": "Upscale Image",
|
||||
"ImageScaleBy": "Upscale Image By",
|
||||
"ImageUpscaleWithModel": "Upscale Image (using Model)",
|
||||
@ -2295,7 +2088,6 @@ def init_builtin_extra_nodes():
|
||||
"nodes_align_your_steps.py",
|
||||
"nodes_attention_multiply.py",
|
||||
"nodes_advanced_samplers.py",
|
||||
"nodes_webcam.py",
|
||||
"nodes_audio.py",
|
||||
"nodes_sd3.py",
|
||||
"nodes_gits.py",
|
||||
@ -2330,6 +2122,9 @@ def init_builtin_extra_nodes():
|
||||
"nodes_tcfg.py"
|
||||
"nodes_v3_test.py",
|
||||
"nodes_v1_test.py",
|
||||
"v3/nodes_images.py",
|
||||
"v3/nodes_mask.py",
|
||||
"v3/nodes_webcam.py",
|
||||
]
|
||||
|
||||
import_failed = []
|
||||
|
Loading…
x
Reference in New Issue
Block a user