Added V3 LoRA Loader node for test purposes, made NodeStateLocal more versatile with dict-like behavior and not throwing errors when nonexisting parameter is requested, returning None instead

This commit is contained in:
Jedrzej Kosinski
2025-06-19 02:17:36 -05:00
parent ef3f45807f
commit fe9a47ae50
2 changed files with 97 additions and 64 deletions

View File

@@ -1,7 +1,10 @@
import torch
from comfy_api.v3 import io
import logging
import folder_paths
import comfy.utils
import comfy.sd
from typing import Any
@io.comfytype(io_type="XYZ")
class XYZ:
@@ -29,8 +32,8 @@ class V3TestNode(io.ComfyNodeV3):
return io.SchemaV3(
node_id="V3_01_TestNode1",
display_name="V3 Test Node",
description="This is a funky V3 node test.",
category="v3 nodes",
description="This is a funky V3 node test.",
inputs=[
io.Image.Input("image", display_name="new_image"),
XYZ.Input("xyz", optional=True),
@@ -75,7 +78,10 @@ class V3TestNode(io.ComfyNodeV3):
zzz = cls.hidden.prompt
cls.state.my_str = "LOLJK"
expected_int = 123
cls.state.my_int = expected_int
if "thing" not in cls.state:
cls.state["thing"] = "hahaha"
yyy = cls.state["thing"]
del cls.state["thing"]
if cls.state.my_int is None:
cls.state.my_int = expected_int
else:
@@ -90,6 +96,71 @@ class V3TestNode(io.ComfyNodeV3):
return io.NodeOutput(some_int, image)
class V3LoraLoader(io.ComfyNodeV3):
class State(io.NodeState):
loaded_lora: tuple[str, Any] | None = None
state: State
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="V3_LoraLoader",
display_name="V3 LoRA Loader",
category="v3 nodes",
description="LoRAs are used to modify diffusion and CLIP models, altering the way in which latents are denoised such as applying styles. Multiple LoRA nodes can be linked together.",
inputs=[
io.Model.Input("model", tooltip="The diffusion model the LoRA will be applied to."),
io.Clip.Input("clip", tooltip="The CLIP model the LoRA will be applied to."),
io.Combo.Input(
"lora_name",
options=folder_paths.get_filename_list("loras"),
tooltip="The name of the LoRA."
),
io.Float.Input(
"strength_model",
default=1.0,
min=-100.0,
max=100.0,
step=0.01,
tooltip="How strongly to modify the diffusion model. This value can be negative."
),
io.Float.Input(
"strength_clip",
default=1.0,
min=-100.0,
max=100.0,
step=0.01,
tooltip="How strongly to modify the CLIP model. This value can be negative."
),
],
outputs=[
io.Model.Output("model_out"),
io.Clip.Output("clip_out"),
],
)
@classmethod
def execute(cls, model: io.Model.Type, clip: io.Clip.Type, lora_name: str, strength_model: float, strength_clip: float, **kwargs):
if strength_model == 0 and strength_clip == 0:
return io.NodeOutput(model, clip)
lora_path = folder_paths.get_full_path_or_raise("loras", lora_name)
lora = None
if cls.state.loaded_lora is not None:
if cls.state.loaded_lora[0] == lora_path:
lora = cls.state.loaded_lora[1]
else:
cls.state.loaded_lora = None
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
cls.state.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return io.NodeOutput(model_lora, clip_lora)
NODES_LIST: list[io.ComfyNodeV3] = [
V3TestNode,
V3LoraLoader,
]