Add elementwise fusions (#9495)

* Add elementwise fusions

* Add addcmul pattern to Qwen
This commit is contained in:
contentis
2025-08-23 01:39:15 +02:00
committed by GitHub
parent ca4e96a8ae
commit fe31ad0276
3 changed files with 20 additions and 18 deletions

View File

@@ -214,9 +214,9 @@ class QwenImageTransformerBlock(nn.Module):
operations=operations,
)
def _modulate(self, x, mod_params):
shift, scale, gate = mod_params.chunk(3, dim=-1)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
shift, scale, gate = torch.chunk(mod_params, 3, dim=-1)
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
def forward(
self,
@@ -248,11 +248,11 @@ class QwenImageTransformerBlock(nn.Module):
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
hidden_states = hidden_states + img_gate2 * self.img_mlp(img_modulated2)
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
encoder_hidden_states = encoder_hidden_states + txt_gate2 * self.txt_mlp(txt_modulated2)
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
return encoder_hidden_states, hidden_states
@@ -275,7 +275,7 @@ class LastLayer(nn.Module):
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
x = torch.addcmul(shift[:, None, :], self.norm(x), (1 + scale)[:, None, :])
return x