diff --git a/comfy_extras/v3/nodes_stable_cascade.py b/comfy_extras/v3/nodes_stable_cascade.py new file mode 100644 index 000000000..36d7e3321 --- /dev/null +++ b/comfy_extras/v3/nodes_stable_cascade.py @@ -0,0 +1,143 @@ +""" + This file is part of ComfyUI. + Copyright (C) 2024 Stability AI + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" + +import torch +import nodes +import comfy.utils + +from comfy_api.v3 import io + + +class StableCascade_EmptyLatentImage_V3(io.ComfyNodeV3): + @classmethod + def DEFINE_SCHEMA(cls): + return io.SchemaV3( + node_id="StableCascade_EmptyLatentImage_V3", + category="latent/stable_cascade", + inputs=[ + io.Int.Input("width", default=1024,min=256,max=nodes.MAX_RESOLUTION, step=8), + io.Int.Input("height", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8), + io.Int.Input("compression", default=42, min=4, max=128, step=1), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output("stage_c", display_name="stage_c"), + io.Latent.Output("stage_b", display_name="stage_b"), + ], + ) + + @classmethod + def execute(cls, width, height, compression, batch_size=1): + c_latent = torch.zeros([batch_size, 16, height // compression, width // compression]) + b_latent = torch.zeros([batch_size, 4, height // 4, width // 4]) + return io.NodeOutput({"samples": c_latent}, {"samples": b_latent}) + + +class StableCascade_StageC_VAEEncode_V3(io.ComfyNodeV3): + @classmethod + def DEFINE_SCHEMA(cls): + return io.SchemaV3( + node_id="StableCascade_StageC_VAEEncode_V3", + category="latent/stable_cascade", + inputs=[ + io.Image.Input("image"), + io.Vae.Input("vae"), + io.Int.Input("compression", default=42, min=4, max=128, step=1), + ], + outputs=[ + io.Latent.Output("stage_c", display_name="stage_c"), + io.Latent.Output("stage_b", display_name="stage_b"), + ], + ) + + @classmethod + def execute(cls, image, vae, compression): + width = image.shape[-2] + height = image.shape[-3] + out_width = (width // compression) * vae.downscale_ratio + out_height = (height // compression) * vae.downscale_ratio + + s = comfy.utils.common_upscale(image.movedim(-1,1), out_width, out_height, "bicubic", "center").movedim(1,-1) + + c_latent = vae.encode(s[:,:,:,:3]) + b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2]) + return io.NodeOutput({"samples": c_latent}, {"samples": b_latent}) + + +class StableCascade_StageB_Conditioning_V3(io.ComfyNodeV3): + @classmethod + def DEFINE_SCHEMA(cls): + return io.SchemaV3( + node_id="StableCascade_StageB_Conditioning_V3", + category="conditioning/stable_cascade", + inputs=[ + io.Conditioning.Input("conditioning"), + io.Latent.Input("stage_c"), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) + + @classmethod + def execute(cls, conditioning, stage_c): + c = [] + for t in conditioning: + d = t[1].copy() + d['stable_cascade_prior'] = stage_c['samples'] + n = [t[0], d] + c.append(n) + return io.NodeOutput(c) + + +class StableCascade_SuperResolutionControlnet_V3(io.ComfyNodeV3): + @classmethod + def DEFINE_SCHEMA(cls): + return io.SchemaV3( + node_id="StableCascade_SuperResolutionControlnet_V3", + category="_for_testing/stable_cascade", + is_experimental=True, + inputs=[ + io.Image.Input("image"), + io.Vae.Input("vae"), + ], + outputs=[ + io.Image.Output("controlnet_input", display_name="controlnet_input"), + io.Latent.Output("stage_c", display_name="stage_c"), + io.Latent.Output("stage_b", display_name="stage_b"), + ], + ) + + @classmethod + def execute(cls, image, vae): + width = image.shape[-2] + height = image.shape[-3] + batch_size = image.shape[0] + controlnet_input = vae.encode(image[:,:,:,:3]).movedim(1, -1) + + c_latent = torch.zeros([batch_size, 16, height // 16, width // 16]) + b_latent = torch.zeros([batch_size, 4, height // 2, width // 2]) + return io.NodeOutput(controlnet_input, {"samples": c_latent}, {"samples": b_latent}) + + +NODES_LIST: list[type[io.ComfyNodeV3]] = [ + StableCascade_EmptyLatentImage_V3, + StableCascade_StageB_Conditioning_V3, + StableCascade_StageC_VAEEncode_V3, + StableCascade_SuperResolutionControlnet_V3, +] diff --git a/nodes.py b/nodes.py index 428b32bea..90d20e6a6 100644 --- a/nodes.py +++ b/nodes.py @@ -2303,6 +2303,7 @@ def init_builtin_extra_nodes(): "v3/nodes_images.py", "v3/nodes_mask.py", "v3/nodes_webcam.py", + "v3/nodes_stable_cascade.py", ] import_failed = []