Make Qwen work with optimized_attention_override

This commit is contained in:
Jedrzej Kosinski
2025-08-28 19:52:52 -07:00
parent 48ed71caf8
commit f752715aac

View File

@@ -132,6 +132,7 @@ class Attention(nn.Module):
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
seq_txt = encoder_hidden_states.shape[1]
@@ -159,7 +160,7 @@ class Attention(nn.Module):
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
@@ -226,6 +227,7 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod_params = self.img_mod(temb)
txt_mod_params = self.txt_mod(temb)
@@ -242,6 +244,7 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states=txt_modulated,
encoder_hidden_states_mask=encoder_hidden_states_mask,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
hidden_states = hidden_states + img_gate1 * img_attn_output
@@ -434,9 +437,9 @@ class QwenImageTransformer2DModel(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"])
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
@@ -446,11 +449,12 @@ class QwenImageTransformer2DModel(nn.Module):
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i})
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]