[Training Node] algo support, grad acc, optional grad ckpt (#9015)

* Add factorization utils for lokr

* Add lokr train impl

* Add loha train impl

* Add adapter map for algo selection

* Add optional grad ckpt and algo selection

* Update __init__.py

* correct key name for loha

* Use custom fwd/bwd func and better init for loha

* Support gradient accumulation

* Fix bugs of loha

* use more stable init

* Add OFT training

* linting
This commit is contained in:
Kohaku-Blueleaf
2025-07-24 08:57:27 +08:00
committed by GitHub
parent e729a5cc11
commit eb2f78b4e0
6 changed files with 372 additions and 15 deletions

View File

@@ -20,7 +20,7 @@ import folder_paths
import node_helpers
from comfy.cli_args import args
from comfy.comfy_types.node_typing import IO
from comfy.weight_adapter import adapters
from comfy.weight_adapter import adapters, adapter_maps
def make_batch_extra_option_dict(d, indicies, full_size=None):
@@ -39,13 +39,13 @@ def make_batch_extra_option_dict(d, indicies, full_size=None):
class TrainSampler(comfy.samplers.Sampler):
def __init__(self, loss_fn, optimizer, loss_callback=None, batch_size=1, total_steps=1, seed=0, training_dtype=torch.bfloat16):
def __init__(self, loss_fn, optimizer, loss_callback=None, batch_size=1, grad_acc=1, total_steps=1, seed=0, training_dtype=torch.bfloat16):
self.loss_fn = loss_fn
self.optimizer = optimizer
self.loss_callback = loss_callback
self.batch_size = batch_size
self.total_steps = total_steps
self.grad_acc = grad_acc
self.seed = seed
self.training_dtype = training_dtype
@@ -92,8 +92,9 @@ class TrainSampler(comfy.samplers.Sampler):
self.loss_callback(loss.item())
pbar.set_postfix({"loss": f"{loss.item():.4f}"})
self.optimizer.step()
self.optimizer.zero_grad()
if (i+1) % self.grad_acc == 0:
self.optimizer.step()
self.optimizer.zero_grad()
torch.cuda.empty_cache()
return torch.zeros_like(latent_image)
@@ -419,6 +420,16 @@ class TrainLoraNode:
"tooltip": "The batch size to use for training.",
},
),
"grad_accumulation_steps": (
IO.INT,
{
"default": 1,
"min": 1,
"max": 1024,
"step": 1,
"tooltip": "The number of gradient accumulation steps to use for training.",
}
),
"steps": (
IO.INT,
{
@@ -478,6 +489,17 @@ class TrainLoraNode:
["bf16", "fp32"],
{"default": "bf16", "tooltip": "The dtype to use for lora."},
),
"algorithm": (
list(adapter_maps.keys()),
{"default": list(adapter_maps.keys())[0], "tooltip": "The algorithm to use for training."},
),
"gradient_checkpointing": (
IO.BOOLEAN,
{
"default": True,
"tooltip": "Use gradient checkpointing for training.",
}
),
"existing_lora": (
folder_paths.get_filename_list("loras") + ["[None]"],
{
@@ -501,6 +523,7 @@ class TrainLoraNode:
positive,
batch_size,
steps,
grad_accumulation_steps,
learning_rate,
rank,
optimizer,
@@ -508,6 +531,8 @@ class TrainLoraNode:
seed,
training_dtype,
lora_dtype,
algorithm,
gradient_checkpointing,
existing_lora,
):
mp = model.clone()
@@ -558,10 +583,8 @@ class TrainLoraNode:
if existing_adapter is not None:
break
else:
# If no existing adapter found, use LoRA
# We will add algo option in the future
existing_adapter = None
adapter_cls = adapters[0]
adapter_cls = adapter_maps[algorithm]
if existing_adapter is not None:
train_adapter = existing_adapter.to_train().to(lora_dtype)
@@ -615,8 +638,9 @@ class TrainLoraNode:
criterion = torch.nn.SmoothL1Loss()
# setup models
for m in find_all_highest_child_module_with_forward(mp.model.diffusion_model):
patch(m)
if gradient_checkpointing:
for m in find_all_highest_child_module_with_forward(mp.model.diffusion_model):
patch(m)
mp.model.requires_grad_(False)
comfy.model_management.load_models_gpu([mp], memory_required=1e20, force_full_load=True)
@@ -629,7 +653,8 @@ class TrainLoraNode:
optimizer,
loss_callback=loss_callback,
batch_size=batch_size,
total_steps=steps,
grad_acc=grad_accumulation_steps,
total_steps=steps*grad_accumulation_steps,
seed=seed,
training_dtype=dtype
)