mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-28 08:46:35 +00:00
Revert "V3 nodes: stable cascade" (#8873)
This commit is contained in:
parent
a7e9956dfc
commit
eabd053227
@ -1,218 +0,0 @@
|
|||||||
"""
|
|
||||||
This file is part of ComfyUI.
|
|
||||||
Copyright (C) 2024 Stability AI
|
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import nodes
|
|
||||||
import comfy.utils
|
|
||||||
|
|
||||||
from comfy_api.v3 import io
|
|
||||||
|
|
||||||
|
|
||||||
class StableCascade_EmptyLatentImage_V3(io.ComfyNodeV3):
|
|
||||||
@classmethod
|
|
||||||
def DEFINE_SCHEMA(cls):
|
|
||||||
return io.SchemaV3(
|
|
||||||
node_id="StableCascade_EmptyLatentImage_V3",
|
|
||||||
category="latent/stable_cascade",
|
|
||||||
inputs=[
|
|
||||||
io.Int.Input(
|
|
||||||
"width",
|
|
||||||
default=1024,
|
|
||||||
min=256,
|
|
||||||
max=nodes.MAX_RESOLUTION, step=8,
|
|
||||||
),
|
|
||||||
io.Int.Input(
|
|
||||||
"height",
|
|
||||||
default=1024,
|
|
||||||
min=256,
|
|
||||||
max=nodes.MAX_RESOLUTION,
|
|
||||||
step=8,
|
|
||||||
),
|
|
||||||
io.Int.Input(
|
|
||||||
"compression",
|
|
||||||
default=42,
|
|
||||||
min=4,
|
|
||||||
max=128,
|
|
||||||
step=1,
|
|
||||||
),
|
|
||||||
io.Int.Input(
|
|
||||||
"batch_size",
|
|
||||||
default=1,
|
|
||||||
min=1,
|
|
||||||
max=4096,
|
|
||||||
),
|
|
||||||
],
|
|
||||||
outputs=[
|
|
||||||
io.Latent.Output(
|
|
||||||
"stage_c",
|
|
||||||
display_name="stage_c",
|
|
||||||
),
|
|
||||||
io.Latent.Output(
|
|
||||||
"stage_b",
|
|
||||||
display_name="stage_b",
|
|
||||||
),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def execute(cls, width, height, compression, batch_size=1):
|
|
||||||
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression])
|
|
||||||
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4])
|
|
||||||
return ({
|
|
||||||
"samples": c_latent,
|
|
||||||
}, {
|
|
||||||
"samples": b_latent,
|
|
||||||
})
|
|
||||||
|
|
||||||
|
|
||||||
class StableCascade_StageC_VAEEncode_V3(io.ComfyNodeV3):
|
|
||||||
@classmethod
|
|
||||||
def DEFINE_SCHEMA(cls):
|
|
||||||
return io.SchemaV3(
|
|
||||||
node_id="StableCascade_StageC_VAEEncode_V3",
|
|
||||||
category="latent/stable_cascade",
|
|
||||||
inputs=[
|
|
||||||
io.Image.Input(
|
|
||||||
"image",
|
|
||||||
),
|
|
||||||
io.Vae.Input(
|
|
||||||
"vae",
|
|
||||||
),
|
|
||||||
io.Int.Input(
|
|
||||||
"compression",
|
|
||||||
default=42,
|
|
||||||
min=4,
|
|
||||||
max=128,
|
|
||||||
step=1,
|
|
||||||
),
|
|
||||||
],
|
|
||||||
outputs=[
|
|
||||||
io.Latent.Output(
|
|
||||||
"stage_c",
|
|
||||||
display_name="stage_c",
|
|
||||||
),
|
|
||||||
io.Latent.Output(
|
|
||||||
"stage_b",
|
|
||||||
display_name="stage_b",
|
|
||||||
),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def execute(cls, image, vae, compression):
|
|
||||||
width = image.shape[-2]
|
|
||||||
height = image.shape[-3]
|
|
||||||
out_width = (width // compression) * vae.downscale_ratio
|
|
||||||
out_height = (height // compression) * vae.downscale_ratio
|
|
||||||
|
|
||||||
s = comfy.utils.common_upscale(image.movedim(-1,1), out_width, out_height, "bicubic", "center").movedim(1,-1)
|
|
||||||
|
|
||||||
c_latent = vae.encode(s[:,:,:,:3])
|
|
||||||
b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2])
|
|
||||||
return ({
|
|
||||||
"samples": c_latent,
|
|
||||||
}, {
|
|
||||||
"samples": b_latent,
|
|
||||||
})
|
|
||||||
|
|
||||||
|
|
||||||
class StableCascade_StageB_Conditioning_V3(io.ComfyNodeV3):
|
|
||||||
@classmethod
|
|
||||||
def DEFINE_SCHEMA(cls):
|
|
||||||
return io.SchemaV3(
|
|
||||||
node_id="StableCascade_StageB_Conditioning_V3",
|
|
||||||
category="conditioning/stable_cascade",
|
|
||||||
inputs=[
|
|
||||||
io.Conditioning.Input(
|
|
||||||
"conditioning",
|
|
||||||
),
|
|
||||||
io.Latent.Input(
|
|
||||||
"stage_c",
|
|
||||||
),
|
|
||||||
],
|
|
||||||
outputs=[
|
|
||||||
io.Conditioning.Output(
|
|
||||||
"CONDITIONING",
|
|
||||||
),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def execute(cls, conditioning, stage_c):
|
|
||||||
c = []
|
|
||||||
for t in conditioning:
|
|
||||||
d = t[1].copy()
|
|
||||||
d['stable_cascade_prior'] = stage_c['samples']
|
|
||||||
n = [t[0], d]
|
|
||||||
c.append(n)
|
|
||||||
return (c, )
|
|
||||||
|
|
||||||
|
|
||||||
class StableCascade_SuperResolutionControlnet_V3(io.ComfyNodeV3):
|
|
||||||
@classmethod
|
|
||||||
def DEFINE_SCHEMA(cls):
|
|
||||||
return io.SchemaV3(
|
|
||||||
node_id="StableCascade_SuperResolutionControlnet_V3",
|
|
||||||
category="_for_testing/stable_cascade",
|
|
||||||
is_experimental=True,
|
|
||||||
inputs=[
|
|
||||||
io.Image.Input(
|
|
||||||
"image",
|
|
||||||
),
|
|
||||||
io.Vae.Input(
|
|
||||||
"vae",
|
|
||||||
),
|
|
||||||
],
|
|
||||||
outputs=[
|
|
||||||
io.Image.Output(
|
|
||||||
"controlnet_input",
|
|
||||||
display_name="controlnet_input",
|
|
||||||
),
|
|
||||||
io.Latent.Output(
|
|
||||||
"stage_c",
|
|
||||||
display_name="stage_c",
|
|
||||||
),
|
|
||||||
io.Latent.Output(
|
|
||||||
"stage_b",
|
|
||||||
display_name="stage_b",
|
|
||||||
),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def execute(cls, image, vae):
|
|
||||||
width = image.shape[-2]
|
|
||||||
height = image.shape[-3]
|
|
||||||
batch_size = image.shape[0]
|
|
||||||
controlnet_input = vae.encode(image[:,:,:,:3]).movedim(1, -1)
|
|
||||||
|
|
||||||
c_latent = torch.zeros([batch_size, 16, height // 16, width // 16])
|
|
||||||
b_latent = torch.zeros([batch_size, 4, height // 2, width // 2])
|
|
||||||
return (controlnet_input, {
|
|
||||||
"samples": c_latent,
|
|
||||||
}, {
|
|
||||||
"samples": b_latent,
|
|
||||||
})
|
|
||||||
|
|
||||||
|
|
||||||
NODES_LIST: list[type[io.ComfyNodeV3]] = [
|
|
||||||
StableCascade_EmptyLatentImage_V3,
|
|
||||||
StableCascade_StageB_Conditioning_V3,
|
|
||||||
StableCascade_StageC_VAEEncode_V3,
|
|
||||||
StableCascade_SuperResolutionControlnet_V3,
|
|
||||||
]
|
|
Loading…
x
Reference in New Issue
Block a user