mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-14 21:45:06 +00:00
Add arguments to run the VAE in fp16 or bf16 for testing.
This commit is contained in:
14
comfy/sd.py
14
comfy/sd.py
@@ -505,6 +505,8 @@ class VAE:
|
||||
device = model_management.vae_device()
|
||||
self.device = device
|
||||
self.offload_device = model_management.vae_offload_device()
|
||||
self.vae_dtype = model_management.vae_dtype()
|
||||
self.first_stage_model.to(self.vae_dtype)
|
||||
|
||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
@@ -512,7 +514,7 @@ class VAE:
|
||||
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
|
||||
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.device)) + 1.0)
|
||||
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
|
||||
output = torch.clamp((
|
||||
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
@@ -526,7 +528,7 @@ class VAE:
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
|
||||
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample()
|
||||
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
|
||||
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
@@ -543,8 +545,8 @@ class VAE:
|
||||
|
||||
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
|
||||
for x in range(0, samples_in.shape[0], batch_number):
|
||||
samples = samples_in[x:x+batch_number].to(self.device)
|
||||
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
|
||||
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
|
||||
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu().float()
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
||||
pixel_samples = self.decode_tiled_(samples_in)
|
||||
@@ -570,8 +572,8 @@ class VAE:
|
||||
batch_number = max(1, batch_number)
|
||||
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
|
||||
for x in range(0, pixel_samples.shape[0], batch_number):
|
||||
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
|
||||
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu()
|
||||
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
|
||||
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu().float()
|
||||
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||
|
Reference in New Issue
Block a user