v3 nodes (part a) (#9149)

This commit is contained in:
Alexander Piskun
2025-08-22 05:05:36 +03:00
committed by GitHub
parent bc49106837
commit bab08f40d1
4 changed files with 239 additions and 155 deletions

View File

@@ -1,3 +1,7 @@
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def attention_multiply(attn, model, q, k, v, out):
m = model.clone()
@@ -16,57 +20,71 @@ def attention_multiply(attn, model, q, k, v, out):
return m
class UNetSelfAttentionMultiply:
class UNetSelfAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetSelfAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, q, k, v, out):
@classmethod
def execute(cls, model, q, k, v, out) -> io.NodeOutput:
m = attention_multiply("attn1", model, q, k, v, out)
return (m, )
return io.NodeOutput(m)
class UNetCrossAttentionMultiply:
class UNetCrossAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetCrossAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, q, k, v, out):
@classmethod
def execute(cls, model, q, k, v, out) -> io.NodeOutput:
m = attention_multiply("attn2", model, q, k, v, out)
return (m, )
return io.NodeOutput(m)
class CLIPAttentionMultiply:
class CLIPAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip": ("CLIP",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="CLIPAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Clip.Input("clip"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Clip.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, clip, q, k, v, out):
@classmethod
def execute(cls, clip, q, k, v, out) -> io.NodeOutput:
m = clip.clone()
sd = m.patcher.model_state_dict()
@@ -79,23 +97,28 @@ class CLIPAttentionMultiply:
m.add_patches({key: (None,)}, 0.0, v)
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"):
m.add_patches({key: (None,)}, 0.0, out)
return (m, )
return io.NodeOutput(m)
class UNetTemporalAttentionMultiply:
class UNetTemporalAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetTemporalAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("self_structural", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("self_temporal", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("cross_structural", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("cross_temporal", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal):
@classmethod
def execute(cls, model, self_structural, self_temporal, cross_structural, cross_temporal) -> io.NodeOutput:
m = model.clone()
sd = model.model_state_dict()
@@ -110,11 +133,18 @@ class UNetTemporalAttentionMultiply:
m.add_patches({k: (None,)}, 0.0, cross_temporal)
else:
m.add_patches({k: (None,)}, 0.0, cross_structural)
return (m, )
return io.NodeOutput(m)
NODE_CLASS_MAPPINGS = {
"UNetSelfAttentionMultiply": UNetSelfAttentionMultiply,
"UNetCrossAttentionMultiply": UNetCrossAttentionMultiply,
"CLIPAttentionMultiply": CLIPAttentionMultiply,
"UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply,
}
class AttentionMultiplyExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
UNetSelfAttentionMultiply,
UNetCrossAttentionMultiply,
CLIPAttentionMultiply,
UNetTemporalAttentionMultiply,
]
async def comfy_entrypoint() -> AttentionMultiplyExtension:
return AttentionMultiplyExtension()