mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
V3 Nodes: LoadAudio and PreviewAudio
This commit is contained in:
parent
4294dfc496
commit
ac05d9a5fa
@ -1,5 +1,9 @@
|
||||
from __future__ import annotations
|
||||
from abc import ABC, abstractmethod
|
||||
from io import BytesIO
|
||||
|
||||
import av
|
||||
import torchaudio
|
||||
from comfy_api.v3.io import Image, FolderType, _UIOutput, ComfyNodeV3
|
||||
# used for image preview
|
||||
from comfy.cli_args import args
|
||||
@ -119,6 +123,111 @@ class PreviewAudio(_UIOutput):
|
||||
def __init__(self, values: list[SavedResult | dict], **kwargs):
|
||||
self.values = values
|
||||
|
||||
def __init__(self, audio, cls: ComfyNodeV3=None, **kwargs):
|
||||
output_dir = folder_paths.get_temp_directory()
|
||||
type = "temp"
|
||||
prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
||||
filename_prefix = "ComfyUI"
|
||||
quality = "128k"
|
||||
format = "flac"
|
||||
|
||||
filename_prefix += prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix, output_dir
|
||||
)
|
||||
|
||||
# Prepare metadata dictionary
|
||||
metadata = {}
|
||||
if not args.disable_metadata and cls is not None:
|
||||
if cls.hidden.prompt is not None:
|
||||
metadata["prompt"] = json.dumps(cls.hidden.prompt)
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
# Opus supported sample rates
|
||||
OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
|
||||
results = []
|
||||
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
|
||||
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
||||
file = f"{filename_with_batch_num}_{counter:05}_.{format}"
|
||||
output_path = os.path.join(full_output_folder, file)
|
||||
|
||||
# Use original sample rate initially
|
||||
sample_rate = audio["sample_rate"]
|
||||
|
||||
# Handle Opus sample rate requirements
|
||||
if format == "opus":
|
||||
if sample_rate > 48000:
|
||||
sample_rate = 48000
|
||||
elif sample_rate not in OPUS_RATES:
|
||||
# Find the next highest supported rate
|
||||
for rate in sorted(OPUS_RATES):
|
||||
if rate > sample_rate:
|
||||
sample_rate = rate
|
||||
break
|
||||
if sample_rate not in OPUS_RATES: # Fallback if still not supported
|
||||
sample_rate = 48000
|
||||
|
||||
# Resample if necessary
|
||||
if sample_rate != audio["sample_rate"]:
|
||||
waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
|
||||
|
||||
# Create output with specified format
|
||||
output_buffer = BytesIO()
|
||||
output_container = av.open(output_buffer, mode='w', format=format)
|
||||
|
||||
# Set metadata on the container
|
||||
for key, value in metadata.items():
|
||||
output_container.metadata[key] = value
|
||||
|
||||
# Set up the output stream with appropriate properties
|
||||
if format == "opus":
|
||||
out_stream = output_container.add_stream("libopus", rate=sample_rate)
|
||||
if quality == "64k":
|
||||
out_stream.bit_rate = 64000
|
||||
elif quality == "96k":
|
||||
out_stream.bit_rate = 96000
|
||||
elif quality == "128k":
|
||||
out_stream.bit_rate = 128000
|
||||
elif quality == "192k":
|
||||
out_stream.bit_rate = 192000
|
||||
elif quality == "320k":
|
||||
out_stream.bit_rate = 320000
|
||||
elif format == "mp3":
|
||||
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
|
||||
if quality == "V0":
|
||||
# TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
|
||||
out_stream.codec_context.qscale = 1
|
||||
elif quality == "128k":
|
||||
out_stream.bit_rate = 128000
|
||||
elif quality == "320k":
|
||||
out_stream.bit_rate = 320000
|
||||
else: # format == "flac":
|
||||
out_stream = output_container.add_stream("flac", rate=sample_rate)
|
||||
|
||||
frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt',
|
||||
layout='mono' if waveform.shape[0] == 1 else 'stereo')
|
||||
frame.sample_rate = sample_rate
|
||||
frame.pts = 0
|
||||
output_container.mux(out_stream.encode(frame))
|
||||
|
||||
# Flush encoder
|
||||
output_container.mux(out_stream.encode(None))
|
||||
|
||||
# Close containers
|
||||
output_container.close()
|
||||
|
||||
# Write the output to file
|
||||
output_buffer.seek(0)
|
||||
with open(output_path, 'wb') as f:
|
||||
f.write(output_buffer.getbuffer())
|
||||
|
||||
results.append(SavedResult(file, subfolder, type))
|
||||
counter += 1
|
||||
|
||||
self.values = results
|
||||
|
||||
def as_dict(self):
|
||||
return {"audio": self.values}
|
||||
|
||||
|
78
comfy_extras/v3/nodes_audio.py
Normal file
78
comfy_extras/v3/nodes_audio.py
Normal file
@ -0,0 +1,78 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import torchaudio
|
||||
import folder_paths
|
||||
import os
|
||||
import io
|
||||
import hashlib
|
||||
from comfy_api.v3 import io, ui
|
||||
|
||||
|
||||
class PreviewAudio_V3(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="PreviewAudio_V3",
|
||||
display_name="Preview Audio _V3",
|
||||
category="audio",
|
||||
inputs=[
|
||||
io.Audio.Input("audio"),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, audio):
|
||||
return io.NodeOutput(ui=ui.PreviewAudio(audio, cls=cls))
|
||||
|
||||
|
||||
class LoadAudio_V3(io.ComfyNodeV3):
|
||||
@classmethod
|
||||
def DEFINE_SCHEMA(cls):
|
||||
return io.SchemaV3(
|
||||
node_id="LoadAudio_V3",
|
||||
display_name="Load Audio _V3",
|
||||
category="audio",
|
||||
inputs=[
|
||||
io.Combo.Input("audio", upload=io.UploadType.audio, options=cls.get_files_options()),
|
||||
],
|
||||
outputs=[io.Audio.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_files_options(cls) -> list[str]:
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
return sorted(folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]))
|
||||
|
||||
@classmethod
|
||||
def execute(cls, audio) -> io.NodeOutput:
|
||||
waveform, sample_rate = torchaudio.load(folder_paths.get_annotated_filepath(audio))
|
||||
return io.NodeOutput({"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate})
|
||||
|
||||
@classmethod
|
||||
def fingerprint_inputs(s, audio):
|
||||
image_path = folder_paths.get_annotated_filepath(audio)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, "rb") as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
@classmethod
|
||||
def validate_inputs(s, audio):
|
||||
if not folder_paths.exists_annotated_filepath(audio):
|
||||
return "Invalid audio file: {}".format(audio)
|
||||
return True
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNodeV3]] = [
|
||||
# EmptyLatentAudio_V3,
|
||||
# VAEEncodeAudio_V3,
|
||||
# VAEDecodeAudio_V3,
|
||||
# SaveAudio_V3,
|
||||
# SaveAudioMP3_V3,
|
||||
# SaveAudioOpus_V3,
|
||||
LoadAudio_V3,
|
||||
PreviewAudio_V3,
|
||||
# ConditioningStableAudio_V3,
|
||||
]
|
Loading…
x
Reference in New Issue
Block a user