Make flux work with optimized_attention_override

This commit is contained in:
Jedrzej Kosinski
2025-08-28 19:33:02 -07:00
parent 1f499f0794
commit a7d70e42a0
3 changed files with 18 additions and 13 deletions

View File

@@ -159,7 +159,7 @@ class DoubleStreamBlock(nn.Module):
) )
self.flipped_img_txt = flipped_img_txt self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None): def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
img_mod1, img_mod2 = self.img_mod(vec) img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec)
@@ -182,7 +182,7 @@ class DoubleStreamBlock(nn.Module):
attn = attention(torch.cat((img_q, txt_q), dim=2), attn = attention(torch.cat((img_q, txt_q), dim=2),
torch.cat((img_k, txt_k), dim=2), torch.cat((img_k, txt_k), dim=2),
torch.cat((img_v, txt_v), dim=2), torch.cat((img_v, txt_v), dim=2),
pe=pe, mask=attn_mask) pe=pe, mask=attn_mask, transformer_options=transformer_options)
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:] img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else: else:
@@ -190,7 +190,7 @@ class DoubleStreamBlock(nn.Module):
attn = attention(torch.cat((txt_q, img_q), dim=2), attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2), torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2), torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask) pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:] txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
@@ -244,7 +244,7 @@ class SingleStreamBlock(nn.Module):
self.mlp_act = nn.GELU(approximate="tanh") self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor: def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
mod, _ = self.modulation(vec) mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
@@ -252,7 +252,7 @@ class SingleStreamBlock(nn.Module):
q, k = self.norm(q, k, v) q, k = self.norm(q, k, v)
# compute attention # compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask) attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer # compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += apply_mod(output, mod.gate, None, modulation_dims) x += apply_mod(output, mod.gate, None, modulation_dims)

View File

@@ -6,7 +6,7 @@ from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management import comfy.model_management
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor: def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
q_shape = q.shape q_shape = q.shape
k_shape = k.shape k_shape = k.shape
@@ -17,7 +17,7 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v) k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
heads = q.shape[1] heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask) x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
return x return x

View File

@@ -135,14 +135,16 @@ class Flux(nn.Module):
txt=args["txt"], txt=args["txt"],
vec=args["vec"], vec=args["vec"],
pe=args["pe"], pe=args["pe"],
attn_mask=args.get("attn_mask")) attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out return out
out = blocks_replace[("double_block", i)]({"img": img, out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt, "txt": txt,
"vec": vec, "vec": vec,
"pe": pe, "pe": pe,
"attn_mask": attn_mask}, "attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap}) {"original_block": block_wrap})
txt = out["txt"] txt = out["txt"]
img = out["img"] img = out["img"]
@@ -151,7 +153,8 @@ class Flux(nn.Module):
txt=txt, txt=txt,
vec=vec, vec=vec,
pe=pe, pe=pe,
attn_mask=attn_mask) attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet if control is not None: # Controlnet
control_i = control.get("input") control_i = control.get("input")
@@ -172,17 +175,19 @@ class Flux(nn.Module):
out["img"] = block(args["img"], out["img"] = block(args["img"],
vec=args["vec"], vec=args["vec"],
pe=args["pe"], pe=args["pe"],
attn_mask=args.get("attn_mask")) attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out return out
out = blocks_replace[("single_block", i)]({"img": img, out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec, "vec": vec,
"pe": pe, "pe": pe,
"attn_mask": attn_mask}, "attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap}) {"original_block": block_wrap})
img = out["img"] img = out["img"]
else: else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask) img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet if control is not None: # Controlnet
control_o = control.get("output") control_o = control.get("output")