mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-10 19:46:38 +00:00
Fix EasyCache/LazyCache crash when tensor shape/dtype/device changes during sampling (#9528)
* Fix EasyCache/LazyCache crash when tensor shape/dtype/device changes during sampling * Fix missing LazyCache check_metadata method Ensure LazyCache reset method resets all the tensor state values
This commit is contained in:
@@ -28,6 +28,7 @@ def easycache_forward_wrapper(executor, *args, **kwargs):
|
||||
input_change = None
|
||||
do_easycache = easycache.should_do_easycache(sigmas)
|
||||
if do_easycache:
|
||||
easycache.check_metadata(x)
|
||||
# if first cond marked this step for skipping, skip it and use appropriate cached values
|
||||
if easycache.skip_current_step:
|
||||
if easycache.verbose:
|
||||
@@ -92,6 +93,7 @@ def lazycache_predict_noise_wrapper(executor, *args, **kwargs):
|
||||
input_change = None
|
||||
do_easycache = easycache.should_do_easycache(timestep)
|
||||
if do_easycache:
|
||||
easycache.check_metadata(x)
|
||||
if easycache.has_x_prev_subsampled():
|
||||
if easycache.has_x_prev_subsampled():
|
||||
input_change = (easycache.subsample(x, clone=False) - easycache.x_prev_subsampled).flatten().abs().mean()
|
||||
@@ -194,6 +196,7 @@ class EasyCacheHolder:
|
||||
# how to deal with mismatched dims
|
||||
self.allow_mismatch = True
|
||||
self.cut_from_start = True
|
||||
self.state_metadata = None
|
||||
|
||||
def is_past_end_timestep(self, timestep: float) -> bool:
|
||||
return not (timestep[0] > self.end_t).item()
|
||||
@@ -283,6 +286,17 @@ class EasyCacheHolder:
|
||||
def has_first_cond_uuid(self, uuids: list[UUID]) -> bool:
|
||||
return self.first_cond_uuid in uuids
|
||||
|
||||
def check_metadata(self, x: torch.Tensor) -> bool:
|
||||
metadata = (x.device, x.dtype, x.shape[1:])
|
||||
if self.state_metadata is None:
|
||||
self.state_metadata = metadata
|
||||
return True
|
||||
if metadata == self.state_metadata:
|
||||
return True
|
||||
logging.warn(f"{self.name} - Tensor shape, dtype or device changed, resetting state")
|
||||
self.reset()
|
||||
return False
|
||||
|
||||
def reset(self):
|
||||
self.relative_transformation_rate = 0.0
|
||||
self.cumulative_change_rate = 0.0
|
||||
@@ -299,6 +313,7 @@ class EasyCacheHolder:
|
||||
del self.uuid_cache_diffs
|
||||
self.uuid_cache_diffs = {}
|
||||
self.total_steps_skipped = 0
|
||||
self.state_metadata = None
|
||||
return self
|
||||
|
||||
def clone(self):
|
||||
@@ -360,6 +375,7 @@ class LazyCacheHolder:
|
||||
self.output_change_rates = []
|
||||
self.approx_output_change_rates = []
|
||||
self.total_steps_skipped = 0
|
||||
self.state_metadata = None
|
||||
|
||||
def has_cache_diff(self) -> bool:
|
||||
return self.cache_diff is not None
|
||||
@@ -404,6 +420,17 @@ class LazyCacheHolder:
|
||||
def update_cache_diff(self, output: torch.Tensor, x: torch.Tensor):
|
||||
self.cache_diff = output - x
|
||||
|
||||
def check_metadata(self, x: torch.Tensor) -> bool:
|
||||
metadata = (x.device, x.dtype, x.shape)
|
||||
if self.state_metadata is None:
|
||||
self.state_metadata = metadata
|
||||
return True
|
||||
if metadata == self.state_metadata:
|
||||
return True
|
||||
logging.warn(f"{self.name} - Tensor shape, dtype or device changed, resetting state")
|
||||
self.reset()
|
||||
return False
|
||||
|
||||
def reset(self):
|
||||
self.relative_transformation_rate = 0.0
|
||||
self.cumulative_change_rate = 0.0
|
||||
@@ -412,7 +439,14 @@ class LazyCacheHolder:
|
||||
self.approx_output_change_rates = []
|
||||
del self.cache_diff
|
||||
self.cache_diff = None
|
||||
del self.x_prev_subsampled
|
||||
self.x_prev_subsampled = None
|
||||
del self.output_prev_subsampled
|
||||
self.output_prev_subsampled = None
|
||||
del self.output_prev_norm
|
||||
self.output_prev_norm = None
|
||||
self.total_steps_skipped = 0
|
||||
self.state_metadata = None
|
||||
return self
|
||||
|
||||
def clone(self):
|
||||
|
Reference in New Issue
Block a user