Fix EasyCache/LazyCache crash when tensor shape/dtype/device changes during sampling (#9528)

* Fix EasyCache/LazyCache crash when tensor shape/dtype/device changes during sampling

* Fix missing LazyCache check_metadata method
Ensure LazyCache reset method resets all the tensor state values
This commit is contained in:
blepping
2025-08-24 13:29:49 -06:00
committed by GitHub
parent 71ed4a399e
commit 95ac7794b7

View File

@@ -28,6 +28,7 @@ def easycache_forward_wrapper(executor, *args, **kwargs):
input_change = None
do_easycache = easycache.should_do_easycache(sigmas)
if do_easycache:
easycache.check_metadata(x)
# if first cond marked this step for skipping, skip it and use appropriate cached values
if easycache.skip_current_step:
if easycache.verbose:
@@ -92,6 +93,7 @@ def lazycache_predict_noise_wrapper(executor, *args, **kwargs):
input_change = None
do_easycache = easycache.should_do_easycache(timestep)
if do_easycache:
easycache.check_metadata(x)
if easycache.has_x_prev_subsampled():
if easycache.has_x_prev_subsampled():
input_change = (easycache.subsample(x, clone=False) - easycache.x_prev_subsampled).flatten().abs().mean()
@@ -194,6 +196,7 @@ class EasyCacheHolder:
# how to deal with mismatched dims
self.allow_mismatch = True
self.cut_from_start = True
self.state_metadata = None
def is_past_end_timestep(self, timestep: float) -> bool:
return not (timestep[0] > self.end_t).item()
@@ -283,6 +286,17 @@ class EasyCacheHolder:
def has_first_cond_uuid(self, uuids: list[UUID]) -> bool:
return self.first_cond_uuid in uuids
def check_metadata(self, x: torch.Tensor) -> bool:
metadata = (x.device, x.dtype, x.shape[1:])
if self.state_metadata is None:
self.state_metadata = metadata
return True
if metadata == self.state_metadata:
return True
logging.warn(f"{self.name} - Tensor shape, dtype or device changed, resetting state")
self.reset()
return False
def reset(self):
self.relative_transformation_rate = 0.0
self.cumulative_change_rate = 0.0
@@ -299,6 +313,7 @@ class EasyCacheHolder:
del self.uuid_cache_diffs
self.uuid_cache_diffs = {}
self.total_steps_skipped = 0
self.state_metadata = None
return self
def clone(self):
@@ -360,6 +375,7 @@ class LazyCacheHolder:
self.output_change_rates = []
self.approx_output_change_rates = []
self.total_steps_skipped = 0
self.state_metadata = None
def has_cache_diff(self) -> bool:
return self.cache_diff is not None
@@ -404,6 +420,17 @@ class LazyCacheHolder:
def update_cache_diff(self, output: torch.Tensor, x: torch.Tensor):
self.cache_diff = output - x
def check_metadata(self, x: torch.Tensor) -> bool:
metadata = (x.device, x.dtype, x.shape)
if self.state_metadata is None:
self.state_metadata = metadata
return True
if metadata == self.state_metadata:
return True
logging.warn(f"{self.name} - Tensor shape, dtype or device changed, resetting state")
self.reset()
return False
def reset(self):
self.relative_transformation_rate = 0.0
self.cumulative_change_rate = 0.0
@@ -412,7 +439,14 @@ class LazyCacheHolder:
self.approx_output_change_rates = []
del self.cache_diff
self.cache_diff = None
del self.x_prev_subsampled
self.x_prev_subsampled = None
del self.output_prev_subsampled
self.output_prev_subsampled = None
del self.output_prev_norm
self.output_prev_norm = None
self.total_steps_skipped = 0
self.state_metadata = None
return self
def clone(self):