New CheckpointLoaderSimple to load checkpoints without a config.

This commit is contained in:
comfyanonymous
2023-03-03 03:37:35 -05:00
parent c1f5855ac1
commit 94bb0375b0
3 changed files with 127 additions and 8 deletions

View File

@@ -317,9 +317,7 @@ class VAE:
pixel_samples = pixel_samples.cpu().movedim(1,-1)
return pixel_samples
def decode_tiled(self, samples):
tile_x = tile_y = 64
overlap = 8
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 8):
model_management.unload_model()
output = torch.empty((samples.shape[0], 3, samples.shape[2] * 8, samples.shape[3] * 8), device="cpu")
self.first_stage_model = self.first_stage_model.to(self.device)
@@ -656,3 +654,103 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
sd = load_torch_file(ckpt_path)
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
return (ModelPatcher(model), clip, vae)
def load_checkpoint_guess_config(ckpt_path, fp16=False, output_vae=True, output_clip=True, embedding_directory=None):
sd = load_torch_file(ckpt_path)
sd_keys = sd.keys()
clip = None
vae = None
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
load_state_dict_to = []
if output_vae:
vae = VAE()
w.first_stage_model = vae.first_stage_model
load_state_dict_to = [w]
if output_clip:
clip_config = {}
if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else:
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
sd_config = {
"linear_start": 0.00085,
"linear_end": 0.012,
"num_timesteps_cond": 1,
"log_every_t": 200,
"timesteps": 1000,
"first_stage_key": "jpg",
"cond_stage_key": "txt",
"image_size": 64,
"channels": 4,
"cond_stage_trainable": False,
"monitor": "val/loss_simple_ema",
"scale_factor": 0.18215,
"use_ema": False,
}
unet_config = {
"use_checkpoint": True,
"image_size": 32,
"out_channels": 4,
"attention_resolutions": [
4,
2,
1
],
"num_res_blocks": 2,
"channel_mult": [
1,
2,
4,
4
],
"use_spatial_transformer": True,
"transformer_depth": 1,
"legacy": False
}
if len(sd['model.diffusion_model.input_blocks.1.1.proj_in.weight'].shape) == 2:
unet_config['use_linear_in_transformer'] = True
unet_config["use_fp16"] = fp16
unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0]
unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
if unet_config["in_channels"] > 4: #inpainting model
sd_config["conditioning_key"] = "hybrid"
sd_config["finetune_keys"] = None
model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
else:
sd_config["conditioning_key"] = "crossattn"
if unet_config["context_dim"] == 1024:
unet_config["num_head_channels"] = 64 #SD2.x
else:
unet_config["num_heads"] = 8 #SD1.x
model = instantiate_from_config(model_config)
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
cond = torch.zeros((1, 2, unet_config["context_dim"]), device="cpu")
x_in = torch.rand((1, unet_config["in_channels"], 8, 8), device="cpu", generator=torch.manual_seed(1))
out = model.apply_model(x_in, torch.tensor([999], device="cpu"), cond)
if out.mean() < -0.6: #mean of eps should be ~0 and mean of v prediction should be ~-1
model.parameterization = 'v'
return (ModelPatcher(model), clip, vae)