Merge branch 'master' into worksplit-multigpu

This commit is contained in:
Jedrzej Kosinski 2025-03-09 00:00:38 -06:00
commit 6e144b98c4
47 changed files with 1179 additions and 315 deletions

View File

@ -0,0 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
pause

View File

@ -7,7 +7,7 @@ on:
description: 'cuda version' description: 'cuda version'
required: true required: true
type: string type: string
default: "126" default: "128"
python_minor: python_minor:
description: 'python minor version' description: 'python minor version'
@ -19,7 +19,7 @@ on:
description: 'python patch version' description: 'python patch version'
required: true required: true
type: string type: string
default: "1" default: "2"
# push: # push:
# branches: # branches:
# - master # - master
@ -34,7 +34,7 @@ jobs:
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 30
persist-credentials: false persist-credentials: false
- uses: actions/setup-python@v5 - uses: actions/setup-python@v5
with: with:
@ -74,7 +74,7 @@ jobs:
pause" > ./update/update_comfyui_and_python_dependencies.bat pause" > ./update/update_comfyui_and_python_dependencies.bat
cd .. cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch "C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z
cd ComfyUI_windows_portable_nightly_pytorch cd ComfyUI_windows_portable_nightly_pytorch

View File

@ -215,9 +215,9 @@ Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126``` ```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126```
This is the command to install pytorch nightly instead which might have performance improvements: This is the command to install pytorch nightly instead which supports the new blackwell 50xx series GPUs and might have performance improvements.
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126``` ```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
#### Troubleshooting #### Troubleshooting

View File

@ -18,14 +18,27 @@ from typing_extensions import NotRequired
from comfy.cli_args import DEFAULT_VERSION_STRING from comfy.cli_args import DEFAULT_VERSION_STRING
def frontend_install_warning_message():
req_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'requirements.txt'))
extra = ""
if sys.flags.no_user_site:
extra = "-s "
return f"Please install the updated requirements.txt file by running:\n{sys.executable} {extra}-m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem"
try: try:
import comfyui_frontend_package import comfyui_frontend_package
except ImportError: except ImportError:
# TODO: Remove the check after roll out of 0.3.16 # TODO: Remove the check after roll out of 0.3.16
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. Please install the updated requirements.txt file by running:\n{sys.executable} -m pip install -r requirements.txt\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n********** ERROR **********\n") logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. {frontend_install_warning_message()}\n********** ERROR **********\n")
exit(-1) exit(-1)
try:
frontend_version = tuple(map(int, comfyui_frontend_package.__version__.split(".")))
except:
frontend_version = (0,)
pass
REQUEST_TIMEOUT = 10 # seconds REQUEST_TIMEOUT = 10 # seconds

View File

@ -1,7 +1,6 @@
import argparse import argparse
import enum import enum
import os import os
from typing import Optional
import comfy.options import comfy.options
@ -166,13 +165,14 @@ parser.add_argument(
""", """,
) )
def is_valid_directory(path: Optional[str]) -> Optional[str]: def is_valid_directory(path: str) -> str:
"""Validate if the given path is a directory.""" """Validate if the given path is a directory, and check permissions."""
if path is None: if not os.path.exists(path):
return None raise argparse.ArgumentTypeError(f"The path '{path}' does not exist.")
if not os.path.isdir(path): if not os.path.isdir(path):
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.") raise argparse.ArgumentTypeError(f"'{path}' is not a directory.")
if not os.access(path, os.R_OK):
raise argparse.ArgumentTypeError(f"You do not have read permissions for '{path}'.")
return path return path
parser.add_argument( parser.add_argument(

View File

@ -97,8 +97,12 @@ class CLIPTextModel_(torch.nn.Module):
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device) self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32): def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
x = self.embeddings(input_tokens, dtype=dtype) if embeds is not None:
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
else:
x = self.embeddings(input_tokens, dtype=dtype)
mask = None mask = None
if attention_mask is not None: if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
@ -116,7 +120,10 @@ class CLIPTextModel_(torch.nn.Module):
if i is not None and final_layer_norm_intermediate: if i is not None and final_layer_norm_intermediate:
i = self.final_layer_norm(i) i = self.final_layer_norm(i)
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),] if num_tokens is not None:
pooled_output = x[list(range(x.shape[0])), list(map(lambda a: a - 1, num_tokens))]
else:
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
return x, i, pooled_output return x, i, pooled_output
class CLIPTextModel(torch.nn.Module): class CLIPTextModel(torch.nn.Module):
@ -204,6 +211,15 @@ class CLIPVision(torch.nn.Module):
pooled_output = self.post_layernorm(x[:, 0, :]) pooled_output = self.post_layernorm(x[:, 0, :])
return x, i, pooled_output return x, i, pooled_output
class LlavaProjector(torch.nn.Module):
def __init__(self, in_dim, out_dim, dtype, device, operations):
super().__init__()
self.linear_1 = operations.Linear(in_dim, out_dim, bias=True, device=device, dtype=dtype)
self.linear_2 = operations.Linear(out_dim, out_dim, bias=True, device=device, dtype=dtype)
def forward(self, x):
return self.linear_2(torch.nn.functional.gelu(self.linear_1(x[:, 1:])))
class CLIPVisionModelProjection(torch.nn.Module): class CLIPVisionModelProjection(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations): def __init__(self, config_dict, dtype, device, operations):
super().__init__() super().__init__()
@ -213,7 +229,16 @@ class CLIPVisionModelProjection(torch.nn.Module):
else: else:
self.visual_projection = lambda a: a self.visual_projection = lambda a: a
if "llava3" == config_dict.get("projector_type", None):
self.multi_modal_projector = LlavaProjector(config_dict["hidden_size"], 4096, dtype, device, operations)
else:
self.multi_modal_projector = None
def forward(self, *args, **kwargs): def forward(self, *args, **kwargs):
x = self.vision_model(*args, **kwargs) x = self.vision_model(*args, **kwargs)
out = self.visual_projection(x[2]) out = self.visual_projection(x[2])
return (x[0], x[1], out) projected = None
if self.multi_modal_projector is not None:
projected = self.multi_modal_projector(x[1])
return (x[0], x[1], out, projected)

View File

@ -65,6 +65,7 @@ class ClipVisionModel():
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device()) outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device()) outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device()) outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs return outputs
def convert_to_transformers(sd, prefix): def convert_to_transformers(sd, prefix):
@ -104,7 +105,10 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152: if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json") json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577: elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json") if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else: else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
else: else:

View File

@ -0,0 +1,19 @@
{
"attention_dropout": 0.0,
"dropout": 0.0,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"image_size": 336,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-5,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768,
"projector_type": "llava3",
"torch_dtype": "float32"
}

View File

@ -1,6 +1,6 @@
import torch import torch
from typing import Callable, Protocol, TypedDict, Optional, List from typing import Callable, Protocol, TypedDict, Optional, List
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin, FileLocator
class UnetApplyFunction(Protocol): class UnetApplyFunction(Protocol):
@ -42,4 +42,5 @@ __all__ = [
InputTypeDict.__name__, InputTypeDict.__name__,
ComfyNodeABC.__name__, ComfyNodeABC.__name__,
CheckLazyMixin.__name__, CheckLazyMixin.__name__,
FileLocator.__name__,
] ]

View File

@ -114,7 +114,7 @@ class InputTypeOptions(TypedDict):
# default: bool # default: bool
label_on: str label_on: str
"""The label to use in the UI when the bool is True (``BOOLEAN``)""" """The label to use in the UI when the bool is True (``BOOLEAN``)"""
label_on: str label_off: str
"""The label to use in the UI when the bool is False (``BOOLEAN``)""" """The label to use in the UI when the bool is False (``BOOLEAN``)"""
# class InputTypeString(InputTypeOptions): # class InputTypeString(InputTypeOptions):
# default: str # default: str
@ -134,6 +134,8 @@ class InputTypeOptions(TypedDict):
""" """
remote: RemoteInputOptions remote: RemoteInputOptions
"""Specifies the configuration for a remote input.""" """Specifies the configuration for a remote input."""
control_after_generate: bool
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
class HiddenInputTypeDict(TypedDict): class HiddenInputTypeDict(TypedDict):
@ -293,3 +295,14 @@ class CheckLazyMixin:
need = [name for name in kwargs if kwargs[name] is None] need = [name for name in kwargs if kwargs[name] is None]
return need return need
class FileLocator(TypedDict):
"""Provides type hinting for the file location"""
filename: str
"""The filename of the file."""
subfolder: str
"""The subfolder of the file."""
type: Literal["input", "output", "temp"]
"""The root folder of the file."""

View File

@ -19,6 +19,10 @@
import torch import torch
from torch import nn from torch import nn
from torch.autograd import Function from torch.autograd import Function
import comfy.ops
ops = comfy.ops.disable_weight_init
class vector_quantize(Function): class vector_quantize(Function):
@staticmethod @staticmethod
@ -121,15 +125,15 @@ class ResBlock(nn.Module):
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.depthwise = nn.Sequential( self.depthwise = nn.Sequential(
nn.ReplicationPad2d(1), nn.ReplicationPad2d(1),
nn.Conv2d(c, c, kernel_size=3, groups=c) ops.Conv2d(c, c, kernel_size=3, groups=c)
) )
# channelwise # channelwise
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential( self.channelwise = nn.Sequential(
nn.Linear(c, c_hidden), ops.Linear(c, c_hidden),
nn.GELU(), nn.GELU(),
nn.Linear(c_hidden, c), ops.Linear(c_hidden, c),
) )
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True) self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
@ -171,16 +175,16 @@ class StageA(nn.Module):
# Encoder blocks # Encoder blocks
self.in_block = nn.Sequential( self.in_block = nn.Sequential(
nn.PixelUnshuffle(2), nn.PixelUnshuffle(2),
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1) ops.Conv2d(3 * 4, c_levels[0], kernel_size=1)
) )
down_blocks = [] down_blocks = []
for i in range(levels): for i in range(levels):
if i > 0: if i > 0:
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1)) down_blocks.append(ops.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
block = ResBlock(c_levels[i], c_levels[i] * 4) block = ResBlock(c_levels[i], c_levels[i] * 4)
down_blocks.append(block) down_blocks.append(block)
down_blocks.append(nn.Sequential( down_blocks.append(nn.Sequential(
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False), ops.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1 nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
)) ))
self.down_blocks = nn.Sequential(*down_blocks) self.down_blocks = nn.Sequential(*down_blocks)
@ -191,7 +195,7 @@ class StageA(nn.Module):
# Decoder blocks # Decoder blocks
up_blocks = [nn.Sequential( up_blocks = [nn.Sequential(
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1) ops.Conv2d(c_latent, c_levels[-1], kernel_size=1)
)] )]
for i in range(levels): for i in range(levels):
for j in range(bottleneck_blocks if i == 0 else 1): for j in range(bottleneck_blocks if i == 0 else 1):
@ -199,11 +203,11 @@ class StageA(nn.Module):
up_blocks.append(block) up_blocks.append(block)
if i < levels - 1: if i < levels - 1:
up_blocks.append( up_blocks.append(
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, ops.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
padding=1)) padding=1))
self.up_blocks = nn.Sequential(*up_blocks) self.up_blocks = nn.Sequential(*up_blocks)
self.out_block = nn.Sequential( self.out_block = nn.Sequential(
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1), ops.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
nn.PixelShuffle(2), nn.PixelShuffle(2),
) )
@ -232,17 +236,17 @@ class Discriminator(nn.Module):
super().__init__() super().__init__()
d = max(depth - 3, 3) d = max(depth - 3, 3)
layers = [ layers = [
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)), nn.utils.spectral_norm(ops.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
nn.LeakyReLU(0.2), nn.LeakyReLU(0.2),
] ]
for i in range(depth - 1): for i in range(depth - 1):
c_in = c_hidden // (2 ** max((d - i), 0)) c_in = c_hidden // (2 ** max((d - i), 0))
c_out = c_hidden // (2 ** max((d - 1 - i), 0)) c_out = c_hidden // (2 ** max((d - 1 - i), 0))
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1))) layers.append(nn.utils.spectral_norm(ops.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
layers.append(nn.InstanceNorm2d(c_out)) layers.append(nn.InstanceNorm2d(c_out))
layers.append(nn.LeakyReLU(0.2)) layers.append(nn.LeakyReLU(0.2))
self.encoder = nn.Sequential(*layers) self.encoder = nn.Sequential(*layers)
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1) self.shuffle = ops.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
self.logits = nn.Sigmoid() self.logits = nn.Sigmoid()
def forward(self, x, cond=None): def forward(self, x, cond=None):

View File

@ -19,6 +19,9 @@ import torch
import torchvision import torchvision
from torch import nn from torch import nn
import comfy.ops
ops = comfy.ops.disable_weight_init
# EfficientNet # EfficientNet
class EfficientNetEncoder(nn.Module): class EfficientNetEncoder(nn.Module):
@ -26,7 +29,7 @@ class EfficientNetEncoder(nn.Module):
super().__init__() super().__init__()
self.backbone = torchvision.models.efficientnet_v2_s().features.eval() self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
self.mapper = nn.Sequential( self.mapper = nn.Sequential(
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False), ops.Conv2d(1280, c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1 nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
) )
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406])) self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
@ -34,7 +37,7 @@ class EfficientNetEncoder(nn.Module):
def forward(self, x): def forward(self, x):
x = x * 0.5 + 0.5 x = x * 0.5 + 0.5
x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1]) x = (x - self.mean.view([3,1,1]).to(device=x.device, dtype=x.dtype)) / self.std.view([3,1,1]).to(device=x.device, dtype=x.dtype)
o = self.mapper(self.backbone(x)) o = self.mapper(self.backbone(x))
return o return o
@ -44,39 +47,39 @@ class Previewer(nn.Module):
def __init__(self, c_in=16, c_hidden=512, c_out=3): def __init__(self, c_in=16, c_hidden=512, c_out=3):
super().__init__() super().__init__()
self.blocks = nn.Sequential( self.blocks = nn.Sequential(
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels ops.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden), nn.BatchNorm2d(c_hidden),
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1), ops.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden), nn.BatchNorm2d(c_hidden),
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32 ops.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 2), nn.BatchNorm2d(c_hidden // 2),
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1), ops.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 2), nn.BatchNorm2d(c_hidden // 2),
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64 ops.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 4), nn.BatchNorm2d(c_hidden // 4),
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1), ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 4), nn.BatchNorm2d(c_hidden // 4),
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128 ops.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 4), nn.BatchNorm2d(c_hidden // 4),
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1), ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 4), nn.BatchNorm2d(c_hidden // 4),
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1), ops.Conv2d(c_hidden // 4, c_out, kernel_size=1),
) )
def forward(self, x): def forward(self, x):

View File

@ -105,7 +105,9 @@ class Modulation(nn.Module):
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
def forward(self, vec: Tensor) -> tuple: def forward(self, vec: Tensor) -> tuple:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) if vec.ndim == 2:
vec = vec[:, None, :]
out = self.lin(nn.functional.silu(vec)).chunk(self.multiplier, dim=-1)
return ( return (
ModulationOut(*out[:3]), ModulationOut(*out[:3]),
@ -113,6 +115,20 @@ class Modulation(nn.Module):
) )
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
if modulation_dims is None:
if m_add is not None:
return tensor * m_mult + m_add
else:
return tensor * m_mult
else:
for d in modulation_dims:
tensor[:, d[0]:d[1]] *= m_mult[:, d[2]]
if m_add is not None:
tensor[:, d[0]:d[1]] += m_add[:, d[2]]
return tensor
class DoubleStreamBlock(nn.Module): class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None): def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__() super().__init__()
@ -143,20 +159,20 @@ class DoubleStreamBlock(nn.Module):
) )
self.flipped_img_txt = flipped_img_txt self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None): def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None):
img_mod1, img_mod2 = self.img_mod(vec) img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention # prepare image for attention
img_modulated = self.img_norm1(img) img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims)
img_qkv = self.img_attn.qkv(img_modulated) img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention # prepare txt for attention
txt_modulated = self.txt_norm1(txt) txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims)
txt_qkv = self.txt_attn.qkv(txt_modulated) txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
@ -179,12 +195,12 @@ class DoubleStreamBlock(nn.Module):
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:] txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks # calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn) img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims)), img_mod2.gate, None, modulation_dims)
# calculate the txt bloks # calculate the txt bloks
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn) txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims)
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims)), txt_mod2.gate, None, modulation_dims)
if txt.dtype == torch.float16: if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504) txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
@ -228,9 +244,9 @@ class SingleStreamBlock(nn.Module):
self.mlp_act = nn.GELU(approximate="tanh") self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None) -> Tensor: def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
mod, _ = self.modulation(vec) mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1((1 + mod.scale) * self.pre_norm(x) + mod.shift), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v) q, k = self.norm(q, k, v)
@ -239,7 +255,7 @@ class SingleStreamBlock(nn.Module):
attn = attention(q, k, v, pe=pe, mask=attn_mask) attn = attention(q, k, v, pe=pe, mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer # compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += mod.gate * output x += apply_mod(output, mod.gate, None, modulation_dims)
if x.dtype == torch.float16: if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x return x
@ -252,8 +268,11 @@ class LastLayer(nn.Module):
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
def forward(self, x: Tensor, vec: Tensor) -> Tensor: def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) if vec.ndim == 2:
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] vec = vec[:, None, :]
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=-1)
x = apply_mod(self.norm_final(x), (1 + scale), shift, modulation_dims)
x = self.linear(x) x = self.linear(x)
return x return x

View File

@ -227,6 +227,7 @@ class HunyuanVideo(nn.Module):
timesteps: Tensor, timesteps: Tensor,
y: Tensor, y: Tensor,
guidance: Tensor = None, guidance: Tensor = None,
guiding_frame_index=None,
control=None, control=None,
transformer_options={}, transformer_options={},
) -> Tensor: ) -> Tensor:
@ -237,7 +238,15 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img) img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype)) vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim]) if guiding_frame_index is not None:
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
else:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
modulation_dims = None
if self.params.guidance_embed: if self.params.guidance_embed:
if guidance is not None: if guidance is not None:
@ -271,7 +280,7 @@ class HunyuanVideo(nn.Module):
txt = out["txt"] txt = out["txt"]
img = out["img"] img = out["img"]
else: else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask) img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
if control is not None: # Controlnet if control is not None: # Controlnet
control_i = control.get("input") control_i = control.get("input")
@ -292,7 +301,7 @@ class HunyuanVideo(nn.Module):
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap}) out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
img = out["img"] img = out["img"]
else: else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask) img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
if control is not None: # Controlnet if control is not None: # Controlnet
control_o = control.get("output") control_o = control.get("output")
@ -303,7 +312,7 @@ class HunyuanVideo(nn.Module):
img = img[:, : img_len] img = img[:, : img_len]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
shape = initial_shape[-3:] shape = initial_shape[-3:]
for i in range(len(shape)): for i in range(len(shape)):
@ -313,7 +322,7 @@ class HunyuanVideo(nn.Module):
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4]) img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
return img return img
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, control=None, transformer_options={}, **kwargs): def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape bs, c, t, h, w = x.shape
patch_size = self.patch_size patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
@ -325,5 +334,5 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1) img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs) img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, control, transformer_options) out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, control, transformer_options)
return out return out

View File

@ -7,7 +7,7 @@ from einops import rearrange
import math import math
from typing import Dict, Optional, Tuple from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
def get_timestep_embedding( def get_timestep_embedding(
@ -377,12 +377,16 @@ class LTXVModel(torch.nn.Module):
positional_embedding_theta=10000.0, positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048], positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
dtype=None, device=None, operations=None, **kwargs): dtype=None, device=None, operations=None, **kwargs):
super().__init__() super().__init__()
self.generator = None self.generator = None
self.vae_scale_factors = vae_scale_factors
self.dtype = dtype self.dtype = dtype
self.out_channels = in_channels self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim self.inner_dim = num_attention_heads * attention_head_dim
self.causal_temporal_positioning = causal_temporal_positioning
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device) self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
@ -416,42 +420,23 @@ class LTXVModel(torch.nn.Module):
self.patchifier = SymmetricPatchifier(1) self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, guiding_latent_noise_scale=0, transformer_options={}, **kwargs): def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
patches_replace = transformer_options.get("patches_replace", {}) patches_replace = transformer_options.get("patches_replace", {})
indices_grid = self.patchifier.get_grid(
orig_num_frames=x.shape[2],
orig_height=x.shape[3],
orig_width=x.shape[4],
batch_size=x.shape[0],
scale_grid=((1 / frame_rate) * 8, 32, 32),
device=x.device,
)
if guiding_latent is not None:
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
ts *= input_ts
ts[:, :, 0] = guiding_latent_noise_scale * (input_ts[:, :, 0] ** 2)
timestep = self.patchifier.patchify(ts)
input_x = x.clone()
x[:, :, 0] = guiding_latent[:, :, 0]
if guiding_latent_noise_scale > 0:
if self.generator is None:
self.generator = torch.Generator(device=x.device).manual_seed(42)
elif self.generator.device != x.device:
self.generator = torch.Generator(device=x.device).set_state(self.generator.get_state())
noise_shape = [guiding_latent.shape[0], guiding_latent.shape[1], 1, guiding_latent.shape[3], guiding_latent.shape[4]]
scale = guiding_latent_noise_scale * (input_ts ** 2)
guiding_noise = scale * torch.randn(size=noise_shape, device=x.device, generator=self.generator)
x[:, :, 0] = guiding_noise[:, :, 0] + x[:, :, 0] * (1.0 - scale[:, :, 0])
orig_shape = list(x.shape) orig_shape = list(x.shape)
x = self.patchifier.patchify(x) x, latent_coords = self.patchifier.patchify(x)
pixel_coords = latent_to_pixel_coords(
latent_coords=latent_coords,
scale_factors=self.vae_scale_factors,
causal_fix=self.causal_temporal_positioning,
)
if keyframe_idxs is not None:
pixel_coords[:, :, -keyframe_idxs.shape[2]:] = keyframe_idxs
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
x = self.patchify_proj(x) x = self.patchify_proj(x)
timestep = timestep * 1000.0 timestep = timestep * 1000.0
@ -459,7 +444,7 @@ class LTXVModel(torch.nn.Module):
if attention_mask is not None and not torch.is_floating_point(attention_mask): if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype) pe = precompute_freqs_cis(fractional_coords, dim=self.inner_dim, out_dtype=x.dtype)
batch_size = x.shape[0] batch_size = x.shape[0]
timestep, embedded_timestep = self.adaln_single( timestep, embedded_timestep = self.adaln_single(
@ -519,8 +504,4 @@ class LTXVModel(torch.nn.Module):
out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size), out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size),
) )
if guiding_latent is not None:
x[:, :, 0] = (input_x[:, :, 0] - guiding_latent[:, :, 0]) / input_ts[:, :, 0]
# print("res", x)
return x return x

View File

@ -6,16 +6,29 @@ from einops import rearrange
from torch import Tensor from torch import Tensor
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor: def latent_to_pixel_coords(
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.""" latent_coords: Tensor, scale_factors: Tuple[int, int, int], causal_fix: bool = False
dims_to_append = target_dims - x.ndim ) -> Tensor:
if dims_to_append < 0: """
raise ValueError( Converts latent coordinates to pixel coordinates by scaling them according to the VAE's
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less" configuration.
) Args:
elif dims_to_append == 0: latent_coords (Tensor): A tensor of shape [batch_size, 3, num_latents]
return x containing the latent corner coordinates of each token.
return x[(...,) + (None,) * dims_to_append] scale_factors (Tuple[int, int, int]): The scale factors of the VAE's latent space.
causal_fix (bool): Whether to take into account the different temporal scale
of the first frame. Default = False for backwards compatibility.
Returns:
Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates.
"""
pixel_coords = (
latent_coords
* torch.tensor(scale_factors, device=latent_coords.device)[None, :, None]
)
if causal_fix:
# Fix temporal scale for first frame to 1 due to causality
pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0)
return pixel_coords
class Patchifier(ABC): class Patchifier(ABC):
@ -44,29 +57,26 @@ class Patchifier(ABC):
def patch_size(self): def patch_size(self):
return self._patch_size return self._patch_size
def get_grid( def get_latent_coords(
self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device self, latent_num_frames, latent_height, latent_width, batch_size, device
): ):
f = orig_num_frames // self._patch_size[0] """
h = orig_height // self._patch_size[1] Return a tensor of shape [batch_size, 3, num_patches] containing the
w = orig_width // self._patch_size[2] top-left corner latent coordinates of each latent patch.
grid_h = torch.arange(h, dtype=torch.float32, device=device) The tensor is repeated for each batch element.
grid_w = torch.arange(w, dtype=torch.float32, device=device) """
grid_f = torch.arange(f, dtype=torch.float32, device=device) latent_sample_coords = torch.meshgrid(
grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing='ij') torch.arange(0, latent_num_frames, self._patch_size[0], device=device),
grid = torch.stack(grid, dim=0) torch.arange(0, latent_height, self._patch_size[1], device=device),
grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) torch.arange(0, latent_width, self._patch_size[2], device=device),
indexing="ij",
if scale_grid is not None: )
for i in range(3): latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
if isinstance(scale_grid[i], Tensor): latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
scale = append_dims(scale_grid[i], grid.ndim - 1) latent_coords = rearrange(
else: latent_coords, "b c f h w -> b c (f h w)", b=batch_size
scale = scale_grid[i] )
grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i] return latent_coords
grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size)
return grid
class SymmetricPatchifier(Patchifier): class SymmetricPatchifier(Patchifier):
@ -74,6 +84,8 @@ class SymmetricPatchifier(Patchifier):
self, self,
latents: Tensor, latents: Tensor,
) -> Tuple[Tensor, Tensor]: ) -> Tuple[Tensor, Tensor]:
b, _, f, h, w = latents.shape
latent_coords = self.get_latent_coords(f, h, w, b, latents.device)
latents = rearrange( latents = rearrange(
latents, latents,
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", "b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
@ -81,7 +93,7 @@ class SymmetricPatchifier(Patchifier):
p2=self._patch_size[1], p2=self._patch_size[1],
p3=self._patch_size[2], p3=self._patch_size[2],
) )
return latents return latents, latent_coords
def unpatchify( def unpatchify(
self, self,

View File

@ -15,6 +15,7 @@ class CausalConv3d(nn.Module):
stride: Union[int, Tuple[int]] = 1, stride: Union[int, Tuple[int]] = 1,
dilation: int = 1, dilation: int = 1,
groups: int = 1, groups: int = 1,
spatial_padding_mode: str = "zeros",
**kwargs, **kwargs,
): ):
super().__init__() super().__init__()
@ -38,7 +39,7 @@ class CausalConv3d(nn.Module):
stride=stride, stride=stride,
dilation=dilation, dilation=dilation,
padding=padding, padding=padding,
padding_mode="zeros", padding_mode=spatial_padding_mode,
groups=groups, groups=groups,
) )

View File

@ -1,13 +1,15 @@
from __future__ import annotations
import torch import torch
from torch import nn from torch import nn
from functools import partial from functools import partial
import math import math
from einops import rearrange from einops import rearrange
from typing import Optional, Tuple, Union from typing import List, Optional, Tuple, Union
from .conv_nd_factory import make_conv_nd, make_linear_nd from .conv_nd_factory import make_conv_nd, make_linear_nd
from .pixel_norm import PixelNorm from .pixel_norm import PixelNorm
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
import comfy.ops import comfy.ops
ops = comfy.ops.disable_weight_init ops = comfy.ops.disable_weight_init
class Encoder(nn.Module): class Encoder(nn.Module):
@ -32,7 +34,7 @@ class Encoder(nn.Module):
norm_layer (`str`, *optional*, defaults to `group_norm`): norm_layer (`str`, *optional*, defaults to `group_norm`):
The normalization layer to use. Can be either `group_norm` or `pixel_norm`. The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
latent_log_var (`str`, *optional*, defaults to `per_channel`): latent_log_var (`str`, *optional*, defaults to `per_channel`):
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`. The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`.
""" """
def __init__( def __init__(
@ -40,12 +42,13 @@ class Encoder(nn.Module):
dims: Union[int, Tuple[int, int]] = 3, dims: Union[int, Tuple[int, int]] = 3,
in_channels: int = 3, in_channels: int = 3,
out_channels: int = 3, out_channels: int = 3,
blocks=[("res_x", 1)], blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
base_channels: int = 128, base_channels: int = 128,
norm_num_groups: int = 32, norm_num_groups: int = 32,
patch_size: Union[int, Tuple[int]] = 1, patch_size: Union[int, Tuple[int]] = 1,
norm_layer: str = "group_norm", # group_norm, pixel_norm norm_layer: str = "group_norm", # group_norm, pixel_norm
latent_log_var: str = "per_channel", latent_log_var: str = "per_channel",
spatial_padding_mode: str = "zeros",
): ):
super().__init__() super().__init__()
self.patch_size = patch_size self.patch_size = patch_size
@ -65,6 +68,7 @@ class Encoder(nn.Module):
stride=1, stride=1,
padding=1, padding=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.down_blocks = nn.ModuleList([]) self.down_blocks = nn.ModuleList([])
@ -82,6 +86,7 @@ class Encoder(nn.Module):
resnet_eps=1e-6, resnet_eps=1e-6,
resnet_groups=norm_num_groups, resnet_groups=norm_num_groups,
norm_layer=norm_layer, norm_layer=norm_layer,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "res_x_y": elif block_name == "res_x_y":
output_channel = block_params.get("multiplier", 2) * output_channel output_channel = block_params.get("multiplier", 2) * output_channel
@ -92,6 +97,7 @@ class Encoder(nn.Module):
eps=1e-6, eps=1e-6,
groups=norm_num_groups, groups=norm_num_groups,
norm_layer=norm_layer, norm_layer=norm_layer,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_time": elif block_name == "compress_time":
block = make_conv_nd( block = make_conv_nd(
@ -101,6 +107,7 @@ class Encoder(nn.Module):
kernel_size=3, kernel_size=3,
stride=(2, 1, 1), stride=(2, 1, 1),
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_space": elif block_name == "compress_space":
block = make_conv_nd( block = make_conv_nd(
@ -110,6 +117,7 @@ class Encoder(nn.Module):
kernel_size=3, kernel_size=3,
stride=(1, 2, 2), stride=(1, 2, 2),
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_all": elif block_name == "compress_all":
block = make_conv_nd( block = make_conv_nd(
@ -119,6 +127,7 @@ class Encoder(nn.Module):
kernel_size=3, kernel_size=3,
stride=(2, 2, 2), stride=(2, 2, 2),
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_all_x_y": elif block_name == "compress_all_x_y":
output_channel = block_params.get("multiplier", 2) * output_channel output_channel = block_params.get("multiplier", 2) * output_channel
@ -129,6 +138,34 @@ class Encoder(nn.Module):
kernel_size=3, kernel_size=3,
stride=(2, 2, 2), stride=(2, 2, 2),
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_all_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(2, 2, 2),
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_space_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(1, 2, 2),
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_time_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(2, 1, 1),
spatial_padding_mode=spatial_padding_mode,
) )
else: else:
raise ValueError(f"unknown block: {block_name}") raise ValueError(f"unknown block: {block_name}")
@ -152,10 +189,18 @@ class Encoder(nn.Module):
conv_out_channels *= 2 conv_out_channels *= 2
elif latent_log_var == "uniform": elif latent_log_var == "uniform":
conv_out_channels += 1 conv_out_channels += 1
elif latent_log_var == "constant":
conv_out_channels += 1
elif latent_log_var != "none": elif latent_log_var != "none":
raise ValueError(f"Invalid latent_log_var: {latent_log_var}") raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
self.conv_out = make_conv_nd( self.conv_out = make_conv_nd(
dims, output_channel, conv_out_channels, 3, padding=1, causal=True dims,
output_channel,
conv_out_channels,
3,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.gradient_checkpointing = False self.gradient_checkpointing = False
@ -197,6 +242,15 @@ class Encoder(nn.Module):
sample = torch.cat([sample, repeated_last_channel], dim=1) sample = torch.cat([sample, repeated_last_channel], dim=1)
else: else:
raise ValueError(f"Invalid input shape: {sample.shape}") raise ValueError(f"Invalid input shape: {sample.shape}")
elif self.latent_log_var == "constant":
sample = sample[:, :-1, ...]
approx_ln_0 = (
-30
) # this is the minimal clamp value in DiagonalGaussianDistribution objects
sample = torch.cat(
[sample, torch.ones_like(sample, device=sample.device) * approx_ln_0],
dim=1,
)
return sample return sample
@ -231,7 +285,7 @@ class Decoder(nn.Module):
dims, dims,
in_channels: int = 3, in_channels: int = 3,
out_channels: int = 3, out_channels: int = 3,
blocks=[("res_x", 1)], blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
base_channels: int = 128, base_channels: int = 128,
layers_per_block: int = 2, layers_per_block: int = 2,
norm_num_groups: int = 32, norm_num_groups: int = 32,
@ -239,6 +293,7 @@ class Decoder(nn.Module):
norm_layer: str = "group_norm", norm_layer: str = "group_norm",
causal: bool = True, causal: bool = True,
timestep_conditioning: bool = False, timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
): ):
super().__init__() super().__init__()
self.patch_size = patch_size self.patch_size = patch_size
@ -264,6 +319,7 @@ class Decoder(nn.Module):
stride=1, stride=1,
padding=1, padding=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.up_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([])
@ -283,6 +339,7 @@ class Decoder(nn.Module):
norm_layer=norm_layer, norm_layer=norm_layer,
inject_noise=block_params.get("inject_noise", False), inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=timestep_conditioning, timestep_conditioning=timestep_conditioning,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "attn_res_x": elif block_name == "attn_res_x":
block = UNetMidBlock3D( block = UNetMidBlock3D(
@ -294,6 +351,7 @@ class Decoder(nn.Module):
inject_noise=block_params.get("inject_noise", False), inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=timestep_conditioning, timestep_conditioning=timestep_conditioning,
attention_head_dim=block_params["attention_head_dim"], attention_head_dim=block_params["attention_head_dim"],
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "res_x_y": elif block_name == "res_x_y":
output_channel = output_channel // block_params.get("multiplier", 2) output_channel = output_channel // block_params.get("multiplier", 2)
@ -306,14 +364,21 @@ class Decoder(nn.Module):
norm_layer=norm_layer, norm_layer=norm_layer,
inject_noise=block_params.get("inject_noise", False), inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=False, timestep_conditioning=False,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_time": elif block_name == "compress_time":
block = DepthToSpaceUpsample( block = DepthToSpaceUpsample(
dims=dims, in_channels=input_channel, stride=(2, 1, 1) dims=dims,
in_channels=input_channel,
stride=(2, 1, 1),
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_space": elif block_name == "compress_space":
block = DepthToSpaceUpsample( block = DepthToSpaceUpsample(
dims=dims, in_channels=input_channel, stride=(1, 2, 2) dims=dims,
in_channels=input_channel,
stride=(1, 2, 2),
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_all": elif block_name == "compress_all":
output_channel = output_channel // block_params.get("multiplier", 1) output_channel = output_channel // block_params.get("multiplier", 1)
@ -323,6 +388,7 @@ class Decoder(nn.Module):
stride=(2, 2, 2), stride=(2, 2, 2),
residual=block_params.get("residual", False), residual=block_params.get("residual", False),
out_channels_reduction_factor=block_params.get("multiplier", 1), out_channels_reduction_factor=block_params.get("multiplier", 1),
spatial_padding_mode=spatial_padding_mode,
) )
else: else:
raise ValueError(f"unknown layer: {block_name}") raise ValueError(f"unknown layer: {block_name}")
@ -340,7 +406,13 @@ class Decoder(nn.Module):
self.conv_act = nn.SiLU() self.conv_act = nn.SiLU()
self.conv_out = make_conv_nd( self.conv_out = make_conv_nd(
dims, output_channel, out_channels, 3, padding=1, causal=True dims,
output_channel,
out_channels,
3,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.gradient_checkpointing = False self.gradient_checkpointing = False
@ -433,6 +505,12 @@ class UNetMidBlock3D(nn.Module):
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
resnet_groups (`int`, *optional*, defaults to 32): resnet_groups (`int`, *optional*, defaults to 32):
The number of groups to use in the group normalization layers of the resnet blocks. The number of groups to use in the group normalization layers of the resnet blocks.
norm_layer (`str`, *optional*, defaults to `group_norm`):
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
inject_noise (`bool`, *optional*, defaults to `False`):
Whether to inject noise into the hidden states.
timestep_conditioning (`bool`, *optional*, defaults to `False`):
Whether to condition the hidden states on the timestep.
Returns: Returns:
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
@ -451,6 +529,7 @@ class UNetMidBlock3D(nn.Module):
norm_layer: str = "group_norm", norm_layer: str = "group_norm",
inject_noise: bool = False, inject_noise: bool = False,
timestep_conditioning: bool = False, timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
): ):
super().__init__() super().__init__()
resnet_groups = ( resnet_groups = (
@ -476,13 +555,17 @@ class UNetMidBlock3D(nn.Module):
norm_layer=norm_layer, norm_layer=norm_layer,
inject_noise=inject_noise, inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning, timestep_conditioning=timestep_conditioning,
spatial_padding_mode=spatial_padding_mode,
) )
for _ in range(num_layers) for _ in range(num_layers)
] ]
) )
def forward( def forward(
self, hidden_states: torch.FloatTensor, causal: bool = True, timestep: Optional[torch.Tensor] = None self,
hidden_states: torch.FloatTensor,
causal: bool = True,
timestep: Optional[torch.Tensor] = None,
) -> torch.FloatTensor: ) -> torch.FloatTensor:
timestep_embed = None timestep_embed = None
if self.timestep_conditioning: if self.timestep_conditioning:
@ -507,9 +590,62 @@ class UNetMidBlock3D(nn.Module):
return hidden_states return hidden_states
class SpaceToDepthDownsample(nn.Module):
def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode):
super().__init__()
self.stride = stride
self.group_size = in_channels * math.prod(stride) // out_channels
self.conv = make_conv_nd(
dims=dims,
in_channels=in_channels,
out_channels=out_channels // math.prod(stride),
kernel_size=3,
stride=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
def forward(self, x, causal: bool = True):
if self.stride[0] == 2:
x = torch.cat(
[x[:, :, :1, :, :], x], dim=2
) # duplicate first frames for padding
# skip connection
x_in = rearrange(
x,
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size)
x_in = x_in.mean(dim=2)
# conv
x = self.conv(x, causal=causal)
x = rearrange(
x,
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
x = x + x_in
return x
class DepthToSpaceUpsample(nn.Module): class DepthToSpaceUpsample(nn.Module):
def __init__( def __init__(
self, dims, in_channels, stride, residual=False, out_channels_reduction_factor=1 self,
dims,
in_channels,
stride,
residual=False,
out_channels_reduction_factor=1,
spatial_padding_mode="zeros",
): ):
super().__init__() super().__init__()
self.stride = stride self.stride = stride
@ -523,6 +659,7 @@ class DepthToSpaceUpsample(nn.Module):
kernel_size=3, kernel_size=3,
stride=1, stride=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.residual = residual self.residual = residual
self.out_channels_reduction_factor = out_channels_reduction_factor self.out_channels_reduction_factor = out_channels_reduction_factor
@ -558,7 +695,7 @@ class DepthToSpaceUpsample(nn.Module):
class LayerNorm(nn.Module): class LayerNorm(nn.Module):
def __init__(self, dim, eps, elementwise_affine=True) -> None: def __init__(self, dim, eps, elementwise_affine=True) -> None:
super().__init__() super().__init__()
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine) self.norm = ops.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
def forward(self, x): def forward(self, x):
x = rearrange(x, "b c d h w -> b d h w c") x = rearrange(x, "b c d h w -> b d h w c")
@ -591,6 +728,7 @@ class ResnetBlock3D(nn.Module):
norm_layer: str = "group_norm", norm_layer: str = "group_norm",
inject_noise: bool = False, inject_noise: bool = False,
timestep_conditioning: bool = False, timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
): ):
super().__init__() super().__init__()
self.in_channels = in_channels self.in_channels = in_channels
@ -617,6 +755,7 @@ class ResnetBlock3D(nn.Module):
stride=1, stride=1,
padding=1, padding=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
if inject_noise: if inject_noise:
@ -641,6 +780,7 @@ class ResnetBlock3D(nn.Module):
stride=1, stride=1,
padding=1, padding=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
if inject_noise: if inject_noise:
@ -801,9 +941,44 @@ class processor(nn.Module):
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x) return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
class VideoVAE(nn.Module): class VideoVAE(nn.Module):
def __init__(self, version=0): def __init__(self, version=0, config=None):
super().__init__() super().__init__()
if config is None:
config = self.guess_config(version)
self.timestep_conditioning = config.get("timestep_conditioning", False)
double_z = config.get("double_z", True)
latent_log_var = config.get(
"latent_log_var", "per_channel" if double_z else "none"
)
self.encoder = Encoder(
dims=config["dims"],
in_channels=config.get("in_channels", 3),
out_channels=config["latent_channels"],
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
patch_size=config.get("patch_size", 1),
latent_log_var=latent_log_var,
norm_layer=config.get("norm_layer", "group_norm"),
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
)
self.decoder = Decoder(
dims=config["dims"],
in_channels=config["latent_channels"],
out_channels=config.get("out_channels", 3),
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
patch_size=config.get("patch_size", 1),
norm_layer=config.get("norm_layer", "group_norm"),
causal=config.get("causal_decoder", False),
timestep_conditioning=self.timestep_conditioning,
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
)
self.per_channel_statistics = processor()
def guess_config(self, version):
if version == 0: if version == 0:
config = { config = {
"_class_name": "CausalVideoAutoencoder", "_class_name": "CausalVideoAutoencoder",
@ -830,7 +1005,7 @@ class VideoVAE(nn.Module):
"use_quant_conv": False, "use_quant_conv": False,
"causal_decoder": False, "causal_decoder": False,
} }
else: elif version == 1:
config = { config = {
"_class_name": "CausalVideoAutoencoder", "_class_name": "CausalVideoAutoencoder",
"dims": 3, "dims": 3,
@ -866,37 +1041,47 @@ class VideoVAE(nn.Module):
"causal_decoder": False, "causal_decoder": False,
"timestep_conditioning": True, "timestep_conditioning": True,
} }
else:
double_z = config.get("double_z", True) config = {
latent_log_var = config.get( "_class_name": "CausalVideoAutoencoder",
"latent_log_var", "per_channel" if double_z else "none" "dims": 3,
) "in_channels": 3,
"out_channels": 3,
self.encoder = Encoder( "latent_channels": 128,
dims=config["dims"], "encoder_blocks": [
in_channels=config.get("in_channels", 3), ["res_x", {"num_layers": 4}],
out_channels=config["latent_channels"], ["compress_space_res", {"multiplier": 2}],
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))), ["res_x", {"num_layers": 6}],
patch_size=config.get("patch_size", 1), ["compress_time_res", {"multiplier": 2}],
latent_log_var=latent_log_var, ["res_x", {"num_layers": 6}],
norm_layer=config.get("norm_layer", "group_norm"), ["compress_all_res", {"multiplier": 2}],
) ["res_x", {"num_layers": 2}],
["compress_all_res", {"multiplier": 2}],
self.decoder = Decoder( ["res_x", {"num_layers": 2}]
dims=config["dims"], ],
in_channels=config["latent_channels"], "decoder_blocks": [
out_channels=config.get("out_channels", 3), ["res_x", {"num_layers": 5, "inject_noise": False}],
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))), ["compress_all", {"residual": True, "multiplier": 2}],
patch_size=config.get("patch_size", 1), ["res_x", {"num_layers": 5, "inject_noise": False}],
norm_layer=config.get("norm_layer", "group_norm"), ["compress_all", {"residual": True, "multiplier": 2}],
causal=config.get("causal_decoder", False), ["res_x", {"num_layers": 5, "inject_noise": False}],
timestep_conditioning=config.get("timestep_conditioning", False), ["compress_all", {"residual": True, "multiplier": 2}],
) ["res_x", {"num_layers": 5, "inject_noise": False}]
],
self.timestep_conditioning = config.get("timestep_conditioning", False) "scaling_factor": 1.0,
self.per_channel_statistics = processor() "norm_layer": "pixel_norm",
"patch_size": 4,
"latent_log_var": "uniform",
"use_quant_conv": False,
"causal_decoder": False,
"timestep_conditioning": True
}
return config
def encode(self, x): def encode(self, x):
frames_count = x.shape[2]
if ((frames_count - 1) % 8) != 0:
raise ValueError("Invalid number of frames: Encode input must have 1 + 8 * x frames (e.g., 1, 9, 17, ...). Please check your input.")
means, logvar = torch.chunk(self.encoder(x), 2, dim=1) means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
return self.per_channel_statistics.normalize(means) return self.per_channel_statistics.normalize(means)

View File

@ -17,7 +17,11 @@ def make_conv_nd(
groups=1, groups=1,
bias=True, bias=True,
causal=False, causal=False,
spatial_padding_mode="zeros",
temporal_padding_mode="zeros",
): ):
if not (spatial_padding_mode == temporal_padding_mode or causal):
raise NotImplementedError("spatial and temporal padding modes must be equal")
if dims == 2: if dims == 2:
return ops.Conv2d( return ops.Conv2d(
in_channels=in_channels, in_channels=in_channels,
@ -28,6 +32,7 @@ def make_conv_nd(
dilation=dilation, dilation=dilation,
groups=groups, groups=groups,
bias=bias, bias=bias,
padding_mode=spatial_padding_mode,
) )
elif dims == 3: elif dims == 3:
if causal: if causal:
@ -40,6 +45,7 @@ def make_conv_nd(
dilation=dilation, dilation=dilation,
groups=groups, groups=groups,
bias=bias, bias=bias,
spatial_padding_mode=spatial_padding_mode,
) )
return ops.Conv3d( return ops.Conv3d(
in_channels=in_channels, in_channels=in_channels,
@ -50,6 +56,7 @@ def make_conv_nd(
dilation=dilation, dilation=dilation,
groups=groups, groups=groups,
bias=bias, bias=bias,
padding_mode=spatial_padding_mode,
) )
elif dims == (2, 1): elif dims == (2, 1):
return DualConv3d( return DualConv3d(
@ -59,6 +66,7 @@ def make_conv_nd(
stride=stride, stride=stride,
padding=padding, padding=padding,
bias=bias, bias=bias,
padding_mode=spatial_padding_mode,
) )
else: else:
raise ValueError(f"unsupported dimensions: {dims}") raise ValueError(f"unsupported dimensions: {dims}")

View File

@ -18,11 +18,13 @@ class DualConv3d(nn.Module):
dilation: Union[int, Tuple[int, int, int]] = 1, dilation: Union[int, Tuple[int, int, int]] = 1,
groups=1, groups=1,
bias=True, bias=True,
padding_mode="zeros",
): ):
super(DualConv3d, self).__init__() super(DualConv3d, self).__init__()
self.in_channels = in_channels self.in_channels = in_channels
self.out_channels = out_channels self.out_channels = out_channels
self.padding_mode = padding_mode
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3 # Ensure kernel_size, stride, padding, and dilation are tuples of length 3
if isinstance(kernel_size, int): if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size, kernel_size) kernel_size = (kernel_size, kernel_size, kernel_size)
@ -108,6 +110,7 @@ class DualConv3d(nn.Module):
self.padding1, self.padding1,
self.dilation1, self.dilation1,
self.groups, self.groups,
padding_mode=self.padding_mode,
) )
if skip_time_conv: if skip_time_conv:
@ -122,6 +125,7 @@ class DualConv3d(nn.Module):
self.padding2, self.padding2,
self.dilation2, self.dilation2,
self.groups, self.groups,
padding_mode=self.padding_mode,
) )
return x return x
@ -137,7 +141,16 @@ class DualConv3d(nn.Module):
stride1 = (self.stride1[1], self.stride1[2]) stride1 = (self.stride1[1], self.stride1[2])
padding1 = (self.padding1[1], self.padding1[2]) padding1 = (self.padding1[1], self.padding1[2])
dilation1 = (self.dilation1[1], self.dilation1[2]) dilation1 = (self.dilation1[1], self.dilation1[2])
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups) x = F.conv2d(
x,
weight1,
self.bias1,
stride1,
padding1,
dilation1,
self.groups,
padding_mode=self.padding_mode,
)
_, _, h, w = x.shape _, _, h, w = x.shape
@ -154,7 +167,16 @@ class DualConv3d(nn.Module):
stride2 = self.stride2[0] stride2 = self.stride2[0]
padding2 = self.padding2[0] padding2 = self.padding2[0]
dilation2 = self.dilation2[0] dilation2 = self.dilation2[0]
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups) x = F.conv1d(
x,
weight2,
self.bias2,
stride2,
padding2,
dilation2,
self.groups,
padding_mode=self.padding_mode,
)
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w) x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
return x return x

View File

@ -108,7 +108,7 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False): if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None: if model_config.custom_operations is None:
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None) fp8 = model_config.optimizations.get("fp8", False)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8) operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
else: else:
operations = model_config.custom_operations operations = model_config.custom_operations
@ -161,9 +161,13 @@ class BaseModel(torch.nn.Module):
extra = extra.to(dtype) extra = extra.to(dtype)
extra_conds[o] = extra extra_conds[o] = extra
t = self.process_timestep(t, x=x, **extra_conds)
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x) return self.model_sampling.calculate_denoised(sigma, model_output, x)
def process_timestep(self, timestep, **kwargs):
return timestep
def get_dtype(self): def get_dtype(self):
return self.diffusion_model.dtype return self.diffusion_model.dtype
@ -185,6 +189,11 @@ class BaseModel(torch.nn.Module):
if concat_latent_image.shape[1:] != noise.shape[1:]: if concat_latent_image.shape[1:] != noise.shape[1:]:
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
if noise.ndim == 5:
if concat_latent_image.shape[-3] < noise.shape[-3]:
concat_latent_image = torch.nn.functional.pad(concat_latent_image, (0, 0, 0, 0, 0, noise.shape[-3] - concat_latent_image.shape[-3]), "constant", 0)
else:
concat_latent_image = concat_latent_image[:, :, :noise.shape[-3]]
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0]) concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
@ -213,6 +222,11 @@ class BaseModel(torch.nn.Module):
cond_concat.append(self.blank_inpaint_image_like(noise)) cond_concat.append(self.blank_inpaint_image_like(noise))
elif ck == "mask_inverted": elif ck == "mask_inverted":
cond_concat.append(torch.zeros_like(noise)[:, :1]) cond_concat.append(torch.zeros_like(noise)[:, :1])
if ck == "concat_image":
if concat_latent_image is not None:
cond_concat.append(concat_latent_image.to(device))
else:
cond_concat.append(torch.zeros_like(noise))
data = torch.cat(cond_concat, dim=1) data = torch.cat(cond_concat, dim=1)
return data return data
return None return None
@ -845,17 +859,26 @@ class LTXV(BaseModel):
if cross_attn is not None: if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guiding_latent = kwargs.get("guiding_latent", None)
if guiding_latent is not None:
out['guiding_latent'] = comfy.conds.CONDRegular(guiding_latent)
guiding_latent_noise_scale = kwargs.get("guiding_latent_noise_scale", None)
if guiding_latent_noise_scale is not None:
out["guiding_latent_noise_scale"] = comfy.conds.CONDConstant(guiding_latent_noise_scale)
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25)) out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
keyframe_idxs = kwargs.get("keyframe_idxs", None)
if keyframe_idxs is not None:
out['keyframe_idxs'] = comfy.conds.CONDRegular(keyframe_idxs)
return out return out
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
return self.diffusion_model.patchifier.patchify(((denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1)))[:, :1])[0]
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return latent_image
class HunyuanVideo(BaseModel): class HunyuanVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None): def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo) super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
@ -872,20 +895,35 @@ class HunyuanVideo(BaseModel):
if cross_attn is not None: if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
if image is not None:
padding_shape = (noise.shape[0], 16, noise.shape[2] - 1, noise.shape[3], noise.shape[4])
latent_padding = torch.zeros(padding_shape, device=noise.device, dtype=noise.dtype)
image_latents = torch.cat([image.to(noise), latent_padding], dim=2)
out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_latents))
guidance = kwargs.get("guidance", 6.0) guidance = kwargs.get("guidance", 6.0)
if guidance is not None: if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance])) out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
guiding_frame_index = kwargs.get("guiding_frame_index", None)
if guiding_frame_index is not None:
out['guiding_frame_index'] = comfy.conds.CONDRegular(torch.FloatTensor([guiding_frame_index]))
return out return out
def scale_latent_inpaint(self, latent_image, **kwargs):
return latent_image
class HunyuanVideoI2V(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
self.concat_keys = ("concat_image", "mask_inverted")
def scale_latent_inpaint(self, latent_image, **kwargs):
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
class HunyuanVideoSkyreelsI2V(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
self.concat_keys = ("concat_image",)
def scale_latent_inpaint(self, latent_image, **kwargs):
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
class CosmosVideo(BaseModel): class CosmosVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None): def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.model.GeneralDIT) super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.model.GeneralDIT)

View File

@ -1,3 +1,4 @@
import json
import comfy.supported_models import comfy.supported_models
import comfy.supported_models_base import comfy.supported_models_base
import comfy.utils import comfy.utils
@ -33,7 +34,7 @@ def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
return None return None
def detect_unet_config(state_dict, key_prefix): def detect_unet_config(state_dict, key_prefix, metadata=None):
state_dict_keys = list(state_dict.keys()) state_dict_keys = list(state_dict.keys())
if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
@ -210,6 +211,8 @@ def detect_unet_config(state_dict, key_prefix):
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {} dit_config = {}
dit_config["image_model"] = "ltxv" dit_config["image_model"] = "ltxv"
if metadata is not None and "config" in metadata:
dit_config.update(json.loads(metadata["config"]).get("transformer", {}))
return dit_config return dit_config
if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt
@ -454,8 +457,8 @@ def model_config_from_unet_config(unet_config, state_dict=None):
logging.error("no match {}".format(unet_config)) logging.error("no match {}".format(unet_config))
return None return None
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False): def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False, metadata=None):
unet_config = detect_unet_config(state_dict, unet_key_prefix) unet_config = detect_unet_config(state_dict, unet_key_prefix, metadata=metadata)
if unet_config is None: if unet_config is None:
return None return None
model_config = model_config_from_unet_config(unet_config, state_dict) model_config = model_config_from_unet_config(unet_config, state_dict)
@ -468,6 +471,10 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
model_config.scaled_fp8 = scaled_fp8_weight.dtype model_config.scaled_fp8 = scaled_fp8_weight.dtype
if model_config.scaled_fp8 == torch.float32: if model_config.scaled_fp8 == torch.float32:
model_config.scaled_fp8 = torch.float8_e4m3fn model_config.scaled_fp8 = torch.float8_e4m3fn
if scaled_fp8_weight.nelement() == 2:
model_config.optimizations["fp8"] = False
else:
model_config.optimizations["fp8"] = True
return model_config return model_config

View File

@ -609,7 +609,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
loaded_memory = loaded_model.model_loaded_memory() loaded_memory = loaded_model.model_loaded_memory()
current_free_mem = get_free_memory(torch_dev) + loaded_memory current_free_mem = get_free_memory(torch_dev) + loaded_memory
lowvram_model_memory = max(64 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory) lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
if vram_set_state == VRAMState.NO_VRAM: if vram_set_state == VRAMState.NO_VRAM:

View File

@ -17,6 +17,7 @@
""" """
import torch import torch
import logging
import comfy.model_management import comfy.model_management
from comfy.cli_args import args, PerformanceFeature from comfy.cli_args import args, PerformanceFeature
import comfy.float import comfy.float
@ -308,6 +309,7 @@ class fp8_ops(manual_cast):
return torch.nn.functional.linear(input, weight, bias) return torch.nn.functional.linear(input, weight, bias)
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None): def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
class scaled_fp8_op(manual_cast): class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear): class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
@ -358,7 +360,7 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None): def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None: if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8) return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
if ( if (
fp8_compute and fp8_compute and

View File

@ -1,4 +1,5 @@
from __future__ import annotations from __future__ import annotations
import json
import torch import torch
from enum import Enum from enum import Enum
import logging import logging
@ -134,8 +135,8 @@ class CLIP:
def clip_layer(self, layer_idx): def clip_layer(self, layer_idx):
self.layer_idx = layer_idx self.layer_idx = layer_idx
def tokenize(self, text, return_word_ids=False): def tokenize(self, text, return_word_ids=False, **kwargs):
return self.tokenizer.tokenize_with_weights(text, return_word_ids) return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
def add_hooks_to_dict(self, pooled_dict: dict[str]): def add_hooks_to_dict(self, pooled_dict: dict[str]):
if self.apply_hooks_to_conds: if self.apply_hooks_to_conds:
@ -249,7 +250,7 @@ class CLIP:
return self.patcher.get_key_patches() return self.patcher.get_key_patches()
class VAE: class VAE:
def __init__(self, sd=None, device=None, config=None, dtype=None): def __init__(self, sd=None, device=None, config=None, dtype=None, metadata=None):
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd) sd = diffusers_convert.convert_vae_state_dict(sd)
@ -357,7 +358,12 @@ class VAE:
version = 0 version = 0
elif tensor_conv1.shape[0] == 1024: elif tensor_conv1.shape[0] == 1024:
version = 1 version = 1
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version) if "encoder.down_blocks.1.conv.conv.bias" in sd:
version = 2
vae_config = None
if metadata is not None and "config" in metadata:
vae_config = json.loads(metadata["config"]).get("vae", None)
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version, config=vae_config)
self.latent_channels = 128 self.latent_channels = 128
self.latent_dim = 3 self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
@ -873,13 +879,13 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
return (model, clip, vae) return (model, clip, vae)
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}): def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
sd = comfy.utils.load_torch_file(ckpt_path) sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True)
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options) out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata)
if out is None: if out is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
return out return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}): def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
clip = None clip = None
clipvision = None clipvision = None
vae = None vae = None
@ -891,7 +897,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix) weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device() load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix) model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
if model_config is None: if model_config is None:
return None return None
@ -920,7 +926,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if output_vae: if output_vae:
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True) vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd) vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd) vae = VAE(sd=vae_sd, metadata=metadata)
if output_clip: if output_clip:
clip_target = model_config.clip_target(state_dict=sd) clip_target = model_config.clip_target(state_dict=sd)

View File

@ -158,71 +158,93 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer_idx = self.options_default[1] self.layer_idx = self.options_default[1]
self.return_projected_pooled = self.options_default[2] self.return_projected_pooled = self.options_default[2]
def set_up_textual_embeddings(self, tokens, current_embeds): def process_tokens(self, tokens, device):
out_tokens = [] end_token = self.special_tokens.get("end", None)
next_new_token = token_dict_size = current_embeds.weight.shape[0] if end_token is None:
embedding_weights = [] cmp_token = self.special_tokens.get("pad", -1)
else:
cmp_token = end_token
embeds_out = []
attention_masks = []
num_tokens = []
for x in tokens: for x in tokens:
attention_mask = []
tokens_temp = [] tokens_temp = []
other_embeds = []
eos = False
index = 0
for y in x: for y in x:
if isinstance(y, numbers.Integral): if isinstance(y, numbers.Integral):
tokens_temp += [int(y)] if eos:
else: attention_mask.append(0)
if y.shape[0] == current_embeds.weight.shape[1]:
embedding_weights += [y]
tokens_temp += [next_new_token]
next_new_token += 1
else: else:
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1])) attention_mask.append(1)
while len(tokens_temp) < len(x): token = int(y)
tokens_temp += [self.special_tokens["pad"]] tokens_temp += [token]
out_tokens += [tokens_temp] if not eos and token == cmp_token:
if end_token is None:
attention_mask[-1] = 0
eos = True
else:
other_embeds.append((index, y))
index += 1
n = token_dict_size tokens_embed = torch.tensor([tokens_temp], device=device, dtype=torch.long)
if len(embedding_weights) > 0: tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) index = 0
new_embedding.weight[:token_dict_size] = current_embeds.weight pad_extra = 0
for x in embedding_weights: for o in other_embeds:
new_embedding.weight[n] = x emb = o[1]
n += 1 if torch.is_tensor(emb):
self.transformer.set_input_embeddings(new_embedding) emb = {"type": "embedding", "data": emb}
processed_tokens = [] emb_type = emb.get("type", None)
for x in out_tokens: if emb_type == "embedding":
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one emb = emb.get("data", None)
else:
if hasattr(self.transformer, "preprocess_embed"):
emb = self.transformer.preprocess_embed(emb, device=device)
else:
emb = None
return processed_tokens if emb is None:
index += -1
continue
ind = index + o[0]
emb = emb.view(1, -1, emb.shape[-1]).to(device=device, dtype=torch.float32)
emb_shape = emb.shape[1]
if emb.shape[-1] == tokens_embed.shape[-1]:
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
index += emb_shape - 1
else:
index += -1
pad_extra += emb_shape
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(emb.shape[-1], tokens_embed.shape[-1]))
if pad_extra > 0:
padd_embed = self.transformer.get_input_embeddings()(torch.tensor([[self.special_tokens["pad"]] * pad_extra], device=device, dtype=torch.long), out_dtype=torch.float32)
tokens_embed = torch.cat([tokens_embed, padd_embed], dim=1)
attention_mask = attention_mask + [0] * pad_extra
embeds_out.append(tokens_embed)
attention_masks.append(attention_mask)
num_tokens.append(sum(attention_mask))
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
def forward(self, tokens): def forward(self, tokens):
backup_embeds = self.transformer.get_input_embeddings() device = self.transformer.get_input_embeddings().weight.device
device = backup_embeds.weight.device embeds, attention_mask, num_tokens = self.process_tokens(tokens, device)
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
tokens = torch.LongTensor(tokens).to(device)
attention_mask = None
if self.enable_attention_masks or self.zero_out_masked or self.return_attention_masks:
attention_mask = torch.zeros_like(tokens)
end_token = self.special_tokens.get("end", None)
if end_token is None:
cmp_token = self.special_tokens.get("pad", -1)
else:
cmp_token = end_token
for x in range(attention_mask.shape[0]):
for y in range(attention_mask.shape[1]):
attention_mask[x, y] = 1
if tokens[x, y] == cmp_token:
if end_token is None:
attention_mask[x, y] = 0
break
attention_mask_model = None attention_mask_model = None
if self.enable_attention_masks: if self.enable_attention_masks:
attention_mask_model = attention_mask attention_mask_model = attention_mask
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32) outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last": if self.layer == "last":
z = outputs[0].float() z = outputs[0].float()
@ -482,7 +504,7 @@ class SDTokenizer:
return (embed, leftover) return (embed, leftover)
def tokenize_with_weights(self, text:str, return_word_ids=False): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
''' '''
Takes a prompt and converts it to a list of (token, weight, word id) elements. Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors. Tokens can both be integer tokens and pre computed CLIP tensors.
@ -596,7 +618,7 @@ class SD1Tokenizer:
tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer) tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer)
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)) setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data))
def tokenize_with_weights(self, text:str, return_word_ids=False): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids) out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
return out return out

View File

@ -26,7 +26,7 @@ class SDXLTokenizer:
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory) self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)

View File

@ -762,7 +762,7 @@ class LTXV(supported_models_base.BASE):
unet_extra_config = {} unet_extra_config = {}
latent_format = latent_formats.LTXV latent_format = latent_formats.LTXV
memory_usage_factor = 2.7 memory_usage_factor = 5.5 # TODO: img2vid is about 2x vs txt2vid
supported_inference_dtypes = [torch.bfloat16, torch.float32] supported_inference_dtypes = [torch.bfloat16, torch.float32]
@ -826,6 +826,26 @@ class HunyuanVideo(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref)) hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect)) return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect))
class HunyuanVideoI2V(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"in_channels": 33,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideoI2V(self, device=device)
return out
class HunyuanVideoSkyreelsI2V(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"in_channels": 32,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideoSkyreelsI2V(self, device=device)
return out
class CosmosT2V(supported_models_base.BASE): class CosmosT2V(supported_models_base.BASE):
unet_config = { unet_config = {
"image_model": "cosmos", "image_model": "cosmos",
@ -911,7 +931,7 @@ class WAN21_T2V(supported_models_base.BASE):
memory_usage_factor = 1.0 memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."] vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."] text_encoder_key_prefix = ["text_encoders."]
@ -939,6 +959,6 @@ class WAN21_I2V(WAN21_T2V):
out = model_base.WAN21(self, image_to_video=True, device=device) out = model_base.WAN21(self, image_to_video=True, device=device)
return out return out
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V] models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V]
models += [SVD_img2vid] models += [SVD_img2vid]

View File

@ -93,8 +93,11 @@ class BertEmbeddings(torch.nn.Module):
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device) self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, input_tokens, token_type_ids=None, dtype=None): def forward(self, input_tokens, embeds=None, token_type_ids=None, dtype=None):
x = self.word_embeddings(input_tokens, out_dtype=dtype) if embeds is not None:
x = embeds
else:
x = self.word_embeddings(input_tokens, out_dtype=dtype)
x += comfy.ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x) x += comfy.ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x)
if token_type_ids is not None: if token_type_ids is not None:
x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype) x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype)
@ -113,8 +116,8 @@ class BertModel_(torch.nn.Module):
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations) self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations) self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embeddings(input_tokens, dtype=dtype) x = self.embeddings(input_tokens, embeds=embeds, dtype=dtype)
mask = None mask = None
if attention_mask is not None: if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])

View File

@ -18,7 +18,7 @@ class FluxTokenizer:
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory) self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids) out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)

View File

@ -4,6 +4,7 @@ import comfy.text_encoders.llama
from transformers import LlamaTokenizerFast from transformers import LlamaTokenizerFast
import torch import torch
import os import os
import numbers
def llama_detect(state_dict, prefix=""): def llama_detect(state_dict, prefix=""):
@ -22,7 +23,7 @@ def llama_detect(state_dict, prefix=""):
class LLAMA3Tokenizer(sd1_clip.SDTokenizer): class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256): def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, end_token=128009, min_length=min_length) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, min_length=min_length)
class LLAMAModel(sd1_clip.SDClipModel): class LLAMAModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
@ -38,15 +39,26 @@ class HunyuanVideoTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer) clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n""" # 95 tokens self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1) self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
def tokenize_with_weights(self, text:str, return_word_ids=False): def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
out = {} out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
llama_text = "{}{}".format(self.llama_template, text) if llama_template is None:
out["llama"] = self.llama.tokenize_with_weights(llama_text, return_word_ids) llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids)
embed_count = 0
for r in llama_text_tokens:
for i in range(len(r)):
if r[i][0] == 128257:
if image_embeds is not None and embed_count < image_embeds.shape[0]:
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image", "image_interleave": image_interleave},) + r[i][1:]
embed_count += 1
out["llama"] = llama_text_tokens
return out return out
def untokenize(self, token_weight_pair): def untokenize(self, token_weight_pair):
@ -80,20 +92,51 @@ class HunyuanVideoClipModel(torch.nn.Module):
llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama) llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama)
template_end = 0 template_end = 0
for i, v in enumerate(token_weight_pairs_llama[0]): extra_template_end = 0
if v[0] == 128007: # <|end_header_id|> extra_sizes = 0
template_end = i user_end = 9999999999999
images = []
tok_pairs = token_weight_pairs_llama[0]
for i, v in enumerate(tok_pairs):
elem = v[0]
if not torch.is_tensor(elem):
if isinstance(elem, numbers.Integral):
if elem == 128006:
if tok_pairs[i + 1][0] == 882:
if tok_pairs[i + 2][0] == 128007:
template_end = i + 2
user_end = -1
if elem == 128009 and user_end == -1:
user_end = i + 1
else:
if elem.get("original_type") == "image":
elem_size = elem.get("data").shape[0]
if template_end > 0:
if user_end == -1:
extra_template_end += elem_size - 1
else:
image_start = i + extra_sizes
image_end = i + elem_size + extra_sizes
images.append((image_start, image_end, elem.get("image_interleave", 1)))
extra_sizes += elem_size - 1
if llama_out.shape[1] > (template_end + 2): if llama_out.shape[1] > (template_end + 2):
if token_weight_pairs_llama[0][template_end + 1][0] == 271: if tok_pairs[template_end + 1][0] == 271:
template_end += 2 template_end += 2
llama_out = llama_out[:, template_end:] llama_output = llama_out[:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end:] llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]): if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]):
llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements
if len(images) > 0:
out = []
for i in images:
out.append(llama_out[:, i[0]: i[1]: i[2]])
llama_output = torch.cat(out + [llama_output], dim=1)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
return llama_out, l_pooled, llama_extra_out return llama_output, l_pooled, llama_extra_out
def load_sd(self, sd): def load_sd(self, sd):
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:

View File

@ -37,7 +37,7 @@ class HyditTokenizer:
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory) self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory) self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids) out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids) out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)

View File

@ -241,8 +241,11 @@ class Llama2_(nn.Module):
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype) # self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embed_tokens(x, out_dtype=dtype) if embeds is not None:
x = embeds
else:
x = self.embed_tokens(x, out_dtype=dtype)
if self.normalize_in: if self.normalize_in:
x *= self.config.hidden_size ** 0.5 x *= self.config.hidden_size ** 0.5

View File

@ -43,7 +43,7 @@ class SD3Tokenizer:
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory) self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory) self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)

View File

@ -239,8 +239,11 @@ class T5(torch.nn.Module):
def set_input_embeddings(self, embeddings): def set_input_embeddings(self, embeddings):
self.shared = embeddings self.shared = embeddings
def forward(self, input_ids, *args, **kwargs): def forward(self, input_ids, attention_mask, embeds=None, num_tokens=None, **kwargs):
x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32)) if input_ids is None:
x = embeds
else:
x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32))
if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]: if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]:
x = torch.nan_to_num(x) #Fix for fp8 T5 base x = torch.nan_to_num(x) #Fix for fp8 T5 base
return self.encoder(x, *args, **kwargs) return self.encoder(x, attention_mask=attention_mask, **kwargs)

View File

@ -46,12 +46,18 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in
else: else:
logging.info("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended.") logging.info("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended.")
def load_torch_file(ckpt, safe_load=False, device=None): def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
if device is None: if device is None:
device = torch.device("cpu") device = torch.device("cpu")
metadata = None
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"): if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
try: try:
sd = safetensors.torch.load_file(ckpt, device=device.type) with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
sd = {}
for k in f.keys():
sd[k] = f.get_tensor(k)
if return_metadata:
metadata = f.metadata()
except Exception as e: except Exception as e:
if len(e.args) > 0: if len(e.args) > 0:
message = e.args[0] message = e.args[0]
@ -77,7 +83,7 @@ def load_torch_file(ckpt, safe_load=False, device=None):
sd = pl_sd sd = pl_sd
else: else:
sd = pl_sd sd = pl_sd
return sd return (sd, metadata) if return_metadata else sd
def save_torch_file(sd, ckpt, metadata=None): def save_torch_file(sd, ckpt, metadata=None):
if metadata is not None: if metadata is not None:

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import torchaudio import torchaudio
import torch import torch
import comfy.model_management import comfy.model_management
@ -10,6 +12,7 @@ import random
import hashlib import hashlib
import node_helpers import node_helpers
from comfy.cli_args import args from comfy.cli_args import args
from comfy.comfy_types import FileLocator
class EmptyLatentAudio: class EmptyLatentAudio:
def __init__(self): def __init__(self):
@ -164,7 +167,7 @@ class SaveAudio:
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
results = list() results: list[FileLocator] = []
metadata = {} metadata = {}
if not args.disable_metadata: if not args.disable_metadata:

View File

@ -454,7 +454,7 @@ class SamplerCustom:
return {"required": return {"required":
{"model": ("MODEL",), {"model": ("MODEL",),
"add_noise": ("BOOLEAN", {"default": True}), "add_noise": ("BOOLEAN", {"default": True}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"positive": ("CONDITIONING", ), "positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ), "negative": ("CONDITIONING", ),
@ -605,10 +605,16 @@ class DisableNoise:
class RandomNoise(DisableNoise): class RandomNoise(DisableNoise):
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required":{ return {
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "required": {
} "noise_seed": ("INT", {
} "default": 0,
"min": 0,
"max": 0xffffffffffffffff,
"control_after_generate": True,
}),
}
}
def get_noise(self, noise_seed): def get_noise(self, noise_seed):
return (Noise_RandomNoise(noise_seed),) return (Noise_RandomNoise(noise_seed),)

View File

@ -1,4 +1,5 @@
import nodes import nodes
import node_helpers
import torch import torch
import comfy.model_management import comfy.model_management
@ -38,7 +39,83 @@ class EmptyHunyuanLatentVideo:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
return ({"samples":latent}, ) return ({"samples":latent}, )
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
"1. The main content and theme of the video."
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
"4. background environment, light, style and atmosphere."
"5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
class TextEncodeHunyuanVideo_ImageToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"image_interleave": ("INT", {"default": 2, "min": 1, "max": 512, "tooltip": "How much the image influences things vs the text prompt. Higher number means more influence from the text prompt."}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, clip_vision_output, prompt, image_interleave):
tokens = clip.tokenize(prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, image_embeds=clip_vision_output.mm_projected, image_interleave=image_interleave)
return (clip.encode_from_tokens_scheduled(tokens), )
class HunyuanImageToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 53, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"guidance_type": (["v1 (concat)", "v2 (replace)"], )
},
"optional": {"start_image": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, vae, width, height, length, batch_size, guidance_type, start_image=None):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
out_latent = {}
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length, :, :, :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image)
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
if guidance_type == "v1 (concat)":
cond = {"concat_latent_image": concat_latent_image, "concat_mask": mask}
else:
cond = {'guiding_frame_index': 0}
latent[:, :, :concat_latent_image.shape[2]] = concat_latent_image
out_latent["noise_mask"] = mask
positive = node_helpers.conditioning_set_values(positive, cond)
out_latent["samples"] = latent
return (positive, out_latent)
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT, "CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT,
"TextEncodeHunyuanVideo_ImageToVideo": TextEncodeHunyuanVideo_ImageToVideo,
"EmptyHunyuanLatentVideo": EmptyHunyuanLatentVideo, "EmptyHunyuanLatentVideo": EmptyHunyuanLatentVideo,
"HunyuanImageToVideo": HunyuanImageToVideo,
} }

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import nodes import nodes
import folder_paths import folder_paths
from comfy.cli_args import args from comfy.cli_args import args
@ -9,6 +11,8 @@ import numpy as np
import json import json
import os import os
from comfy.comfy_types import FileLocator
MAX_RESOLUTION = nodes.MAX_RESOLUTION MAX_RESOLUTION = nodes.MAX_RESOLUTION
class ImageCrop: class ImageCrop:
@ -99,7 +103,7 @@ class SaveAnimatedWEBP:
method = self.methods.get(method) method = self.methods.get(method)
filename_prefix += self.prefix_append filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list() results: list[FileLocator] = []
pil_images = [] pil_images = []
for image in images: for image in images:
i = 255. * image.cpu().numpy() i = 255. * image.cpu().numpy()

View File

@ -1,9 +1,14 @@
import io
import nodes import nodes
import node_helpers import node_helpers
import torch import torch
import comfy.model_management import comfy.model_management
import comfy.model_sampling import comfy.model_sampling
import comfy.utils
import math import math
import numpy as np
import av
from comfy.ldm.lightricks.symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
class EmptyLTXVLatentVideo: class EmptyLTXVLatentVideo:
@classmethod @classmethod
@ -33,7 +38,6 @@ class LTXVImgToVideo:
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), "height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}), "length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"image_noise_scale": ("FLOAT", {"default": 0.15, "min": 0, "max": 1.0, "step": 0.01, "tooltip": "Amount of noise to apply on conditioning image latent."})
}} }}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
@ -42,16 +46,217 @@ class LTXVImgToVideo:
CATEGORY = "conditioning/video_models" CATEGORY = "conditioning/video_models"
FUNCTION = "generate" FUNCTION = "generate"
def generate(self, positive, negative, image, vae, width, height, length, batch_size, image_noise_scale): def generate(self, positive, negative, image, vae, width, height, length, batch_size):
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encode_pixels = pixels[:, :, :, :3] encode_pixels = pixels[:, :, :, :3]
t = vae.encode(encode_pixels) t = vae.encode(encode_pixels)
positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t, "guiding_latent_noise_scale": image_noise_scale})
negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t, "guiding_latent_noise_scale": image_noise_scale})
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
latent[:, :, :t.shape[2]] = t latent[:, :, :t.shape[2]] = t
return (positive, negative, {"samples": latent}, )
conditioning_latent_frames_mask = torch.ones(
(batch_size, 1, latent.shape[2], 1, 1),
dtype=torch.float32,
device=latent.device,
)
conditioning_latent_frames_mask[:, :, :t.shape[2]] = 0
return (positive, negative, {"samples": latent, "noise_mask": conditioning_latent_frames_mask}, )
def conditioning_get_any_value(conditioning, key, default=None):
for t in conditioning:
if key in t[1]:
return t[1][key]
return default
def get_noise_mask(latent):
noise_mask = latent.get("noise_mask", None)
latent_image = latent["samples"]
if noise_mask is None:
batch_size, _, latent_length, _, _ = latent_image.shape
noise_mask = torch.ones(
(batch_size, 1, latent_length, 1, 1),
dtype=torch.float32,
device=latent_image.device,
)
else:
noise_mask = noise_mask.clone()
return noise_mask
def get_keyframe_idxs(cond):
keyframe_idxs = conditioning_get_any_value(cond, "keyframe_idxs", None)
if keyframe_idxs is None:
return None, 0
num_keyframes = torch.unique(keyframe_idxs[:, 0]).shape[0]
return keyframe_idxs, num_keyframes
class LTXVAddGuide:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE",),
"latent": ("LATENT",),
"image": ("IMAGE", {"tooltip": "Image or video to condition the latent video on. Must be 8*n + 1 frames." \
"If the video is not 8*n + 1 frames, it will be cropped to the nearest 8*n + 1 frames."}),
"frame_idx": ("INT", {"default": 0, "min": -9999, "max": 9999,
"tooltip": "Frame index to start the conditioning at. Must be divisible by 8. " \
"If a frame is not divisible by 8, it will be rounded down to the nearest multiple of 8. " \
"Negative values are counted from the end of the video."}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
CATEGORY = "conditioning/video_models"
FUNCTION = "generate"
def __init__(self):
self._num_prefix_frames = 2
self._patchifier = SymmetricPatchifier(1)
def encode(self, vae, latent_width, latent_height, images, scale_factors):
time_scale_factor, width_scale_factor, height_scale_factor = scale_factors
images = images[:(images.shape[0] - 1) // time_scale_factor * time_scale_factor + 1]
pixels = comfy.utils.common_upscale(images.movedim(-1, 1), latent_width * width_scale_factor, latent_height * height_scale_factor, "bilinear", crop="disabled").movedim(1, -1)
encode_pixels = pixels[:, :, :, :3]
t = vae.encode(encode_pixels)
return encode_pixels, t
def get_latent_index(self, cond, latent_length, frame_idx, scale_factors):
time_scale_factor, _, _ = scale_factors
_, num_keyframes = get_keyframe_idxs(cond)
latent_count = latent_length - num_keyframes
frame_idx = frame_idx if frame_idx >= 0 else max((latent_count - 1) * 8 + 1 + frame_idx, 0)
frame_idx = frame_idx // time_scale_factor * time_scale_factor # frame index must be divisible by 8
latent_idx = (frame_idx + time_scale_factor - 1) // time_scale_factor
return frame_idx, latent_idx
def add_keyframe_index(self, cond, frame_idx, guiding_latent, scale_factors):
keyframe_idxs, _ = get_keyframe_idxs(cond)
_, latent_coords = self._patchifier.patchify(guiding_latent)
pixel_coords = latent_to_pixel_coords(latent_coords, scale_factors, True)
pixel_coords[:, 0] += frame_idx
if keyframe_idxs is None:
keyframe_idxs = pixel_coords
else:
keyframe_idxs = torch.cat([keyframe_idxs, pixel_coords], dim=2)
return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs})
def append_keyframe(self, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors):
positive = self.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors)
negative = self.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors)
mask = torch.full(
(noise_mask.shape[0], 1, guiding_latent.shape[2], 1, 1),
1.0 - strength,
dtype=noise_mask.dtype,
device=noise_mask.device,
)
latent_image = torch.cat([latent_image, guiding_latent], dim=2)
noise_mask = torch.cat([noise_mask, mask], dim=2)
return positive, negative, latent_image, noise_mask
def replace_latent_frames(self, latent_image, noise_mask, guiding_latent, latent_idx, strength):
cond_length = guiding_latent.shape[2]
assert latent_image.shape[2] >= latent_idx + cond_length, "Conditioning frames exceed the length of the latent sequence."
mask = torch.full(
(noise_mask.shape[0], 1, cond_length, 1, 1),
1.0 - strength,
dtype=noise_mask.dtype,
device=noise_mask.device,
)
latent_image = latent_image.clone()
noise_mask = noise_mask.clone()
latent_image[:, :, latent_idx : latent_idx + cond_length] = guiding_latent
noise_mask[:, :, latent_idx : latent_idx + cond_length] = mask
return latent_image, noise_mask
def generate(self, positive, negative, vae, latent, image, frame_idx, strength):
scale_factors = vae.downscale_index_formula
latent_image = latent["samples"]
noise_mask = get_noise_mask(latent)
_, _, latent_length, latent_height, latent_width = latent_image.shape
image, t = self.encode(vae, latent_width, latent_height, image, scale_factors)
frame_idx, latent_idx = self.get_latent_index(positive, latent_length, frame_idx, scale_factors)
assert latent_idx + t.shape[2] <= latent_length, "Conditioning frames exceed the length of the latent sequence."
num_prefix_frames = min(self._num_prefix_frames, t.shape[2])
positive, negative, latent_image, noise_mask = self.append_keyframe(
positive,
negative,
frame_idx,
latent_image,
noise_mask,
t[:, :, :num_prefix_frames],
strength,
scale_factors,
)
latent_idx += num_prefix_frames
t = t[:, :, num_prefix_frames:]
if t.shape[2] == 0:
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
latent_image, noise_mask = self.replace_latent_frames(
latent_image,
noise_mask,
t,
latent_idx,
strength,
)
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
class LTXVCropGuides:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent": ("LATENT",),
}
}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
CATEGORY = "conditioning/video_models"
FUNCTION = "crop"
def __init__(self):
self._patchifier = SymmetricPatchifier(1)
def crop(self, positive, negative, latent):
latent_image = latent["samples"].clone()
noise_mask = get_noise_mask(latent)
_, num_keyframes = get_keyframe_idxs(positive)
if num_keyframes == 0:
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
latent_image = latent_image[:, :, :-num_keyframes]
noise_mask = noise_mask[:, :, :-num_keyframes]
positive = node_helpers.conditioning_set_values(positive, {"keyframe_idxs": None})
negative = node_helpers.conditioning_set_values(negative, {"keyframe_idxs": None})
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
class LTXVConditioning: class LTXVConditioning:
@ -174,6 +379,77 @@ class LTXVScheduler:
return (sigmas,) return (sigmas,)
def encode_single_frame(output_file, image_array: np.ndarray, crf):
container = av.open(output_file, "w", format="mp4")
try:
stream = container.add_stream(
"h264", rate=1, options={"crf": str(crf), "preset": "veryfast"}
)
stream.height = image_array.shape[0]
stream.width = image_array.shape[1]
av_frame = av.VideoFrame.from_ndarray(image_array, format="rgb24").reformat(
format="yuv420p"
)
container.mux(stream.encode(av_frame))
container.mux(stream.encode())
finally:
container.close()
def decode_single_frame(video_file):
container = av.open(video_file)
try:
stream = next(s for s in container.streams if s.type == "video")
frame = next(container.decode(stream))
finally:
container.close()
return frame.to_ndarray(format="rgb24")
def preprocess(image: torch.Tensor, crf=29):
if crf == 0:
return image
image_array = (image[:(image.shape[0] // 2) * 2, :(image.shape[1] // 2) * 2] * 255.0).byte().cpu().numpy()
with io.BytesIO() as output_file:
encode_single_frame(output_file, image_array, crf)
video_bytes = output_file.getvalue()
with io.BytesIO(video_bytes) as video_file:
image_array = decode_single_frame(video_file)
tensor = torch.tensor(image_array, dtype=image.dtype, device=image.device) / 255.0
return tensor
class LTXVPreprocess:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"img_compression": (
"INT",
{
"default": 35,
"min": 0,
"max": 100,
"tooltip": "Amount of compression to apply on image.",
},
),
}
}
FUNCTION = "preprocess"
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("output_image",)
CATEGORY = "image"
def preprocess(self, image, img_compression):
if img_compression > 0:
output_images = []
for i in range(image.shape[0]):
output_images.append(preprocess(image[i], img_compression))
return (torch.stack(output_images),)
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"EmptyLTXVLatentVideo": EmptyLTXVLatentVideo, "EmptyLTXVLatentVideo": EmptyLTXVLatentVideo,
@ -181,4 +457,7 @@ NODE_CLASS_MAPPINGS = {
"ModelSamplingLTXV": ModelSamplingLTXV, "ModelSamplingLTXV": ModelSamplingLTXV,
"LTXVConditioning": LTXVConditioning, "LTXVConditioning": LTXVConditioning,
"LTXVScheduler": LTXVScheduler, "LTXVScheduler": LTXVScheduler,
"LTXVAddGuide": LTXVAddGuide,
"LTXVPreprocess": LTXVPreprocess,
"LTXVCropGuides": LTXVCropGuides,
} }

View File

@ -1,9 +1,12 @@
from __future__ import annotations
import os import os
import av import av
import torch import torch
import folder_paths import folder_paths
import json import json
from fractions import Fraction from fractions import Fraction
from comfy.comfy_types import FileLocator
class SaveWEBM: class SaveWEBM:
@ -62,7 +65,7 @@ class SaveWEBM:
container.mux(stream.encode()) container.mux(stream.encode())
container.close() container.close()
results = [{ results: list[FileLocator] = [{
"filename": file, "filename": file,
"subfolder": subfolder, "subfolder": subfolder,
"type": self.type "type": self.type

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is # This file is automatically generated by the build process when version is
# updated in pyproject.toml. # updated in pyproject.toml.
__version__ = "0.3.19" __version__ = "0.3.24"

20
main.py
View File

@ -139,6 +139,7 @@ from server import BinaryEventTypes
import nodes import nodes
import comfy.model_management import comfy.model_management
import comfyui_version import comfyui_version
import app.frontend_management
def cuda_malloc_warning(): def cuda_malloc_warning():
@ -292,12 +293,29 @@ def start_comfyui(asyncio_loop=None):
return asyncio_loop, prompt_server, start_all return asyncio_loop, prompt_server, start_all
def warn_frontend_version(frontend_version):
try:
required_frontend = (0,)
req_path = os.path.join(os.path.dirname(__file__), 'requirements.txt')
with open(req_path, 'r') as f:
required_frontend = tuple(map(int, f.readline().split('=')[-1].split('.')))
if frontend_version < required_frontend:
logging.warning("________________________________________________________________________\nWARNING WARNING WARNING WARNING WARNING\n\nInstalled frontend version {} is lower than the recommended version {}.\n\n{}\n________________________________________________________________________".format('.'.join(map(str, frontend_version)), '.'.join(map(str, required_frontend)), app.frontend_management.frontend_install_warning_message()))
except:
pass
if __name__ == "__main__": if __name__ == "__main__":
# Running directly, just start ComfyUI. # Running directly, just start ComfyUI.
logging.info("ComfyUI version: {}".format(comfyui_version.__version__)) logging.info("ComfyUI version: {}".format(comfyui_version.__version__))
frontend_version = app.frontend_management.frontend_version
logging.info("ComfyUI frontend version: {}".format('.'.join(map(str, frontend_version))))
event_loop, _, start_all_func = start_comfyui() event_loop, _, start_all_func = start_comfyui()
try: try:
event_loop.run_until_complete(start_all_func()) x = start_all_func()
warn_frontend_version(frontend_version)
event_loop.run_until_complete(x)
except KeyboardInterrupt: except KeyboardInterrupt:
logging.info("\nStopped server") logging.info("\nStopped server")

View File

@ -25,7 +25,7 @@ import comfy.sample
import comfy.sd import comfy.sd
import comfy.utils import comfy.utils
import comfy.controlnet import comfy.controlnet
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict, FileLocator
import comfy.clip_vision import comfy.clip_vision
@ -479,7 +479,7 @@ class SaveLatent:
file = f"{filename}_{counter:05}_.latent" file = f"{filename}_{counter:05}_.latent"
results = list() results: list[FileLocator] = []
results.append({ results.append({
"filename": file, "filename": file,
"subfolder": subfolder, "subfolder": subfolder,
@ -1519,7 +1519,7 @@ class KSampler:
return { return {
"required": { "required": {
"model": ("MODEL", {"tooltip": "The model used for denoising the input latent."}), "model": ("MODEL", {"tooltip": "The model used for denoising the input latent."}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "The random seed used for creating the noise."}), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "The algorithm used when sampling, this can affect the quality, speed, and style of the generated output."}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "The algorithm used when sampling, this can affect the quality, speed, and style of the generated output."}),
@ -1547,7 +1547,7 @@ class KSamplerAdvanced:
return {"required": return {"required":
{"model": ("MODEL",), {"model": ("MODEL",),
"add_noise": (["enable", "disable"], ), "add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),

View File

@ -1,6 +1,6 @@
[project] [project]
name = "ComfyUI" name = "ComfyUI"
version = "0.3.19" version = "0.3.24"
readme = "README.md" readme = "README.md"
license = { file = "LICENSE" } license = { file = "LICENSE" }
requires-python = ">=3.9" requires-python = ">=3.9"

View File

@ -1,4 +1,4 @@
comfyui-frontend-package==1.10.17 comfyui-frontend-package==1.11.8
torch torch
torchsde torchsde
torchvision torchvision