mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-11 12:06:23 +00:00
Add support for attention masking in Flux (#5942)
* fix attention OOM in xformers * allow passing attention mask in flux attention * allow an attn_mask in flux * attn masks can be done using replace patches instead of a separate dict * fix return types * fix return order * enumerate * patch the right keys * arg names * fix a silly bug * fix xformers masks * replace match with if, elif, else * mask with image_ref_size * remove unused import * remove unused import 2 * fix pytorch/xformers attention This corrects a weird inconsistency with skip_reshape. It also allows masks of various shapes to be passed, which will be automtically expanded (in a memory-efficient way) to a size that is compatible with xformers or pytorch sdpa respectively. * fix mask shapes
This commit is contained in:
@@ -686,6 +686,7 @@ class StableAudio1(BaseModel):
|
||||
sd["{}{}".format(k, l)] = s[l]
|
||||
return sd
|
||||
|
||||
|
||||
class HunyuanDiT(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hydit.models.HunYuanDiT)
|
||||
@@ -766,6 +767,16 @@ class Flux(BaseModel):
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
# upscale the attention mask, since now we
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
shape = kwargs["noise"].shape
|
||||
mask_ref_size = kwargs["attention_mask_img_shape"]
|
||||
# the model will pad to the patch size, and then divide
|
||||
# essentially dividing and rounding up
|
||||
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
|
||||
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
|
||||
return out
|
||||
|
||||
|
Reference in New Issue
Block a user