diff --git a/comfy_api/v3/__init__.py b/comfy_api/v3/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/comfy_api/v3/helpers.py b/comfy_api/v3/helpers.py
index 019c725f4..c58a1b357 100644
--- a/comfy_api/v3/helpers.py
+++ b/comfy_api/v3/helpers.py
@@ -1,4 +1,4 @@
-from typing import Optional, Callable
+from typing import Callable, Optional
def first_real_override(cls: type, name: str, *, base: type) -> Optional[Callable]:
diff --git a/comfy_api/v3/io.py b/comfy_api/v3/io.py
index 92c0ffc8c..3b189b350 100644
--- a/comfy_api/v3/io.py
+++ b/comfy_api/v3/io.py
@@ -1,27 +1,30 @@
from __future__ import annotations
-from typing import Any, Literal, TypeVar, Callable, TypedDict
-from typing_extensions import NotRequired
-from enum import Enum
-from abc import ABC, abstractmethod
-from dataclasses import dataclass, asdict
-from collections import Counter
-from comfy_execution.graph import ExecutionBlocker
-from comfy_api.internal import ComfyNodeInternal
-from comfy_api.v3.resources import Resources, ResourcesLocal
+
import copy
+from abc import ABC, abstractmethod
+from collections import Counter
+from dataclasses import asdict, dataclass
+from enum import Enum
+from typing import Any, Callable, Literal, TypedDict, TypeVar
+
# used for type hinting
import torch
from spandrel import ImageModelDescriptor
-from comfy.model_patcher import ModelPatcher
-from comfy.samplers import Sampler, CFGGuider
-from comfy.sd import CLIP
-from comfy.controlnet import ControlNet
-from comfy.sd import VAE
-from comfy.sd import StyleModel as StyleModel_
+from typing_extensions import NotRequired
+
from comfy.clip_vision import ClipVisionModel
from comfy.clip_vision import Output as ClipVisionOutput_
-from comfy_api.input import VideoInput
+from comfy.controlnet import ControlNet
from comfy.hooks import HookGroup, HookKeyframeGroup
+from comfy.model_patcher import ModelPatcher
+from comfy.samplers import CFGGuider, Sampler
+from comfy.sd import CLIP, VAE
+from comfy.sd import StyleModel as StyleModel_
+from comfy_api.input import VideoInput
+from comfy_api.internal import ComfyNodeInternal
+from comfy_api.v3.resources import Resources, ResourcesLocal
+from comfy_execution.graph import ExecutionBlocker
+
# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference
@@ -1191,7 +1194,7 @@ class ComfyNodeV3(ComfyNodeInternal):
@classmethod
def GET_NODE_INFO_V3(cls) -> dict[str, Any]:
- schema = cls.GET_SCHEMA()
+ # schema = cls.GET_SCHEMA()
# TODO: finish
return None
@@ -1237,84 +1240,84 @@ class ComfyNodeV3(ComfyNodeInternal):
#--------------------------------------------
_DESCRIPTION = None
@classproperty
- def DESCRIPTION(cls):
+ def DESCRIPTION(cls): # noqa
if cls._DESCRIPTION is None:
cls.GET_SCHEMA()
return cls._DESCRIPTION
_CATEGORY = None
@classproperty
- def CATEGORY(cls):
+ def CATEGORY(cls): # noqa
if cls._CATEGORY is None:
cls.GET_SCHEMA()
return cls._CATEGORY
_EXPERIMENTAL = None
@classproperty
- def EXPERIMENTAL(cls):
+ def EXPERIMENTAL(cls): # noqa
if cls._EXPERIMENTAL is None:
cls.GET_SCHEMA()
return cls._EXPERIMENTAL
_DEPRECATED = None
@classproperty
- def DEPRECATED(cls):
+ def DEPRECATED(cls): # noqa
if cls._DEPRECATED is None:
cls.GET_SCHEMA()
return cls._DEPRECATED
_API_NODE = None
@classproperty
- def API_NODE(cls):
+ def API_NODE(cls): # noqa
if cls._API_NODE is None:
cls.GET_SCHEMA()
return cls._API_NODE
_OUTPUT_NODE = None
@classproperty
- def OUTPUT_NODE(cls):
+ def OUTPUT_NODE(cls): # noqa
if cls._OUTPUT_NODE is None:
cls.GET_SCHEMA()
return cls._OUTPUT_NODE
_INPUT_IS_LIST = None
@classproperty
- def INPUT_IS_LIST(cls):
+ def INPUT_IS_LIST(cls): # noqa
if cls._INPUT_IS_LIST is None:
cls.GET_SCHEMA()
return cls._INPUT_IS_LIST
_OUTPUT_IS_LIST = None
@classproperty
- def OUTPUT_IS_LIST(cls):
+ def OUTPUT_IS_LIST(cls): # noqa
if cls._OUTPUT_IS_LIST is None:
cls.GET_SCHEMA()
return cls._OUTPUT_IS_LIST
_RETURN_TYPES = None
@classproperty
- def RETURN_TYPES(cls):
+ def RETURN_TYPES(cls): # noqa
if cls._RETURN_TYPES is None:
cls.GET_SCHEMA()
return cls._RETURN_TYPES
_RETURN_NAMES = None
@classproperty
- def RETURN_NAMES(cls):
+ def RETURN_NAMES(cls): # noqa
if cls._RETURN_NAMES is None:
cls.GET_SCHEMA()
return cls._RETURN_NAMES
_OUTPUT_TOOLTIPS = None
@classproperty
- def OUTPUT_TOOLTIPS(cls):
+ def OUTPUT_TOOLTIPS(cls): # noqa
if cls._OUTPUT_TOOLTIPS is None:
cls.GET_SCHEMA()
return cls._OUTPUT_TOOLTIPS
_NOT_IDEMPOTENT = None
@classproperty
- def NOT_IDEMPOTENT(cls):
+ def NOT_IDEMPOTENT(cls): # noqa
if cls._NOT_IDEMPOTENT is None:
cls.GET_SCHEMA()
return cls._NOT_IDEMPOTENT
@@ -1494,36 +1497,36 @@ class TestNode(ComfyNodeV3):
def execute(cls, **kwargs):
pass
-if __name__ == "__main__":
- print("hello there")
- inputs: list[InputV3] = [
- Int.Input("tessfes", widgetType=String.io_type),
- Int.Input("my_int"),
- Custom("XYZ").Input("xyz"),
- Custom("MODEL_M").Input("model1"),
- Image.Input("my_image"),
- Float.Input("my_float"),
- MultiType.Input("my_inputs", [String, Custom("MODEL_M"), Custom("XYZ")]),
- ]
- Custom("XYZ").Input()
- outputs: list[OutputV3] = [
- Image.Output("image"),
- Custom("XYZ").Output("xyz"),
- ]
-
- for c in inputs:
- if isinstance(c, MultiType):
- print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}, {[x.io_type for x in c.io_types]}")
- print(c.get_io_type_V1())
- else:
- print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}")
-
- for c in outputs:
- print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}")
-
- zz = TestNode()
- print(zz.GET_NODE_INFO_V1())
-
- # aa = NodeInfoV1()
- # print(asdict(aa))
- # print(as_pruned_dict(aa))
+# if __name__ == "__main__":
+# print("hello there")
+# inputs: list[InputV3] = [
+# Int.Input("tessfes", widgetType=String.io_type),
+# Int.Input("my_int"),
+# Custom("XYZ").Input("xyz"),
+# Custom("MODEL_M").Input("model1"),
+# Image.Input("my_image"),
+# Float.Input("my_float"),
+# MultiType.Input("my_inputs", [String, Custom("MODEL_M"), Custom("XYZ")]),
+# ]
+# Custom("XYZ").Input()
+# outputs: list[OutputV3] = [
+# Image.Output("image"),
+# Custom("XYZ").Output("xyz"),
+# ]
+#
+# for c in inputs:
+# if isinstance(c, MultiType):
+# print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}, {[x.io_type for x in c.io_types]}")
+# print(c.get_io_type_V1())
+# else:
+# print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}")
+#
+# for c in outputs:
+# print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}")
+#
+# zz = TestNode()
+# print(zz.GET_NODE_INFO_V1())
+#
+# # aa = NodeInfoV1()
+# # print(asdict(aa))
+# # print(as_pruned_dict(aa))
diff --git a/comfy_api/v3/ui.py b/comfy_api/v3/ui.py
index a4b624f0b..390b986d4 100644
--- a/comfy_api/v3/ui.py
+++ b/comfy_api/v3/ui.py
@@ -1,15 +1,21 @@
from __future__ import annotations
-from comfy_api.v3.io import Image, FolderType, _UIOutput, ComfyNodeV3
-# used for image preview
-from comfy.cli_args import args
-import folder_paths
+import json
+import os
import random
+from io import BytesIO
+
+import av
+import numpy as np
+import torchaudio
from PIL import Image as PILImage
from PIL.PngImagePlugin import PngInfo
-import os
-import json
-import numpy as np
+
+import folder_paths
+
+# used for image preview
+from comfy.cli_args import args
+from comfy_api.v3.io import ComfyNodeV3, FolderType, Image, _UIOutput
class SavedResult(dict):
@@ -63,11 +69,13 @@ class PreviewImage(_UIOutput):
"animated": (self.animated,)
}
+
class PreviewMask(PreviewImage):
def __init__(self, mask: PreviewMask.Type, animated: bool=False, cls: ComfyNodeV3=None, **kwargs):
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
super().__init__(preview, animated, cls, **kwargs)
+
# class UILatent(_UIOutput):
# def __init__(self, values: list[SavedResult | dict], **kwargs):
# output_dir = folder_paths.get_temp_directory()
@@ -115,13 +123,113 @@ class PreviewMask(PreviewImage):
# "latents": self.values,
# }
+
class PreviewAudio(_UIOutput):
- def __init__(self, values: list[SavedResult | dict], **kwargs):
- self.values = values
+ def __init__(self, audio, cls: ComfyNodeV3=None, **kwargs):
+ quality = "128k"
+ format = "flac"
+
+ filename_prefix = "ComfyUI_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
+ full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
+ filename_prefix, folder_paths.get_temp_directory()
+ )
+
+ # Prepare metadata dictionary
+ metadata = {}
+ if not args.disable_metadata and cls is not None:
+ if cls.hidden.prompt is not None:
+ metadata["prompt"] = json.dumps(cls.hidden.prompt)
+ if cls.hidden.extra_pnginfo is not None:
+ for x in cls.hidden.extra_pnginfo:
+ metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
+
+ # Opus supported sample rates
+ OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
+ results = []
+ for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
+ filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
+ file = f"{filename_with_batch_num}_{counter:05}_.{format}"
+ output_path = os.path.join(full_output_folder, file)
+
+ # Use original sample rate initially
+ sample_rate = audio["sample_rate"]
+
+ # Handle Opus sample rate requirements
+ if format == "opus":
+ if sample_rate > 48000:
+ sample_rate = 48000
+ elif sample_rate not in OPUS_RATES:
+ # Find the next highest supported rate
+ for rate in sorted(OPUS_RATES):
+ if rate > sample_rate:
+ sample_rate = rate
+ break
+ if sample_rate not in OPUS_RATES: # Fallback if still not supported
+ sample_rate = 48000
+
+ # Resample if necessary
+ if sample_rate != audio["sample_rate"]:
+ waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
+
+ # Create output with specified format
+ output_buffer = BytesIO()
+ output_container = av.open(output_buffer, mode='w', format=format)
+
+ # Set metadata on the container
+ for key, value in metadata.items():
+ output_container.metadata[key] = value
+
+ # Set up the output stream with appropriate properties
+ if format == "opus":
+ out_stream = output_container.add_stream("libopus", rate=sample_rate)
+ if quality == "64k":
+ out_stream.bit_rate = 64000
+ elif quality == "96k":
+ out_stream.bit_rate = 96000
+ elif quality == "128k":
+ out_stream.bit_rate = 128000
+ elif quality == "192k":
+ out_stream.bit_rate = 192000
+ elif quality == "320k":
+ out_stream.bit_rate = 320000
+ elif format == "mp3":
+ out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
+ if quality == "V0":
+ # TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
+ out_stream.codec_context.qscale = 1
+ elif quality == "128k":
+ out_stream.bit_rate = 128000
+ elif quality == "320k":
+ out_stream.bit_rate = 320000
+ else: # format == "flac":
+ out_stream = output_container.add_stream("flac", rate=sample_rate)
+
+ frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt',
+ layout='mono' if waveform.shape[0] == 1 else 'stereo')
+ frame.sample_rate = sample_rate
+ frame.pts = 0
+ output_container.mux(out_stream.encode(frame))
+
+ # Flush encoder
+ output_container.mux(out_stream.encode(None))
+
+ # Close containers
+ output_container.close()
+
+ # Write the output to file
+ output_buffer.seek(0)
+ with open(output_path, 'wb') as f:
+ f.write(output_buffer.getbuffer())
+
+ results.append(SavedResult(file, subfolder, FolderType.temp))
+ counter += 1
+
+ self.values = results
def as_dict(self):
return {"audio": self.values}
+
class PreviewUI3D(_UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
@@ -129,6 +237,7 @@ class PreviewUI3D(_UIOutput):
def as_dict(self):
return {"3d": self.values}
+
class PreviewText(_UIOutput):
def __init__(self, value: str, **kwargs):
self.value = value
diff --git a/comfy_extras/v3/nodes_audio.py b/comfy_extras/v3/nodes_audio.py
new file mode 100644
index 000000000..72c4b6c65
--- /dev/null
+++ b/comfy_extras/v3/nodes_audio.py
@@ -0,0 +1,347 @@
+from __future__ import annotations
+
+import hashlib
+import json
+import os
+from io import BytesIO
+
+import av
+import torch
+import torchaudio
+
+import comfy.model_management
+import folder_paths
+import node_helpers
+from comfy.cli_args import args
+from comfy_api.v3 import io, ui
+
+
+class ConditioningStableAudio_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="ConditioningStableAudio_V3",
+ category="conditioning",
+ inputs=[
+ io.Conditioning.Input(id="positive"),
+ io.Conditioning.Input(id="negative"),
+ io.Float.Input(id="seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1),
+ io.Float.Input(id="seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1),
+ ],
+ outputs=[
+ io.Conditioning.Output(id="positive_out", display_name="positive"),
+ io.Conditioning.Output(id="negative_out", display_name="negative"),
+ ],
+ )
+
+ @classmethod
+ def execute(cls, positive, negative, seconds_start, seconds_total) -> io.NodeOutput:
+ return io.NodeOutput(
+ node_helpers.conditioning_set_values(
+ positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}
+ ),
+ node_helpers.conditioning_set_values(
+ negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}
+ ),
+ )
+
+
+class EmptyLatentAudio_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="EmptyLatentAudio_V3",
+ category="latent/audio",
+ inputs=[
+ io.Float.Input(id="seconds", default=47.6, min=1.0, max=1000.0, step=0.1),
+ io.Int.Input(
+ id="batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
+ ),
+ ],
+ outputs=[io.Latent.Output()],
+ )
+
+ @classmethod
+ def execute(cls, seconds, batch_size) -> io.NodeOutput:
+ length = round((seconds * 44100 / 2048) / 2) * 2
+ latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
+ return io.NodeOutput({"samples": latent, "type": "audio"})
+
+
+class LoadAudio_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="LoadAudio_V3", # frontend expects "LoadAudio" to work
+ display_name="Load Audio _V3", # frontend ignores "display_name" for this node
+ category="audio",
+ inputs=[
+ io.Combo.Input("audio", upload=io.UploadType.audio, options=cls.get_files_options()),
+ ],
+ outputs=[io.Audio.Output()],
+ )
+
+ @classmethod
+ def get_files_options(cls) -> list[str]:
+ input_dir = folder_paths.get_input_directory()
+ return sorted(folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]))
+
+ @classmethod
+ def execute(cls, audio) -> io.NodeOutput:
+ waveform, sample_rate = torchaudio.load(folder_paths.get_annotated_filepath(audio))
+ return io.NodeOutput({"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate})
+
+ @classmethod
+ def fingerprint_inputs(s, audio):
+ image_path = folder_paths.get_annotated_filepath(audio)
+ m = hashlib.sha256()
+ with open(image_path, "rb") as f:
+ m.update(f.read())
+ return m.digest().hex()
+
+ @classmethod
+ def validate_inputs(s, audio):
+ if not folder_paths.exists_annotated_filepath(audio):
+ return "Invalid audio file: {}".format(audio)
+ return True
+
+
+class PreviewAudio_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="PreviewAudio_V3", # frontend expects "PreviewAudio" to work
+ display_name="Preview Audio _V3", # frontend ignores "display_name" for this node
+ category="audio",
+ inputs=[
+ io.Audio.Input("audio"),
+ ],
+ hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
+ is_output_node=True,
+ )
+
+ @classmethod
+ def execute(cls, audio) -> io.NodeOutput:
+ return io.NodeOutput(ui=ui.PreviewAudio(audio, cls=cls))
+
+
+class SaveAudioMP3_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="SaveAudioMP3_V3", # frontend expects "SaveAudioMP3" to work
+ display_name="Save Audio(MP3) _V3", # frontend ignores "display_name" for this node
+ category="audio",
+ inputs=[
+ io.Audio.Input("audio"),
+ io.String.Input("filename_prefix", default="audio/ComfyUI"),
+ io.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"),
+ ],
+ hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
+ is_output_node=True,
+ )
+
+ @classmethod
+ def execute(self, audio, filename_prefix="ComfyUI", format="mp3", quality="V0") -> io.NodeOutput:
+ return _save_audio(self, audio, filename_prefix, format, quality)
+
+
+class SaveAudioOpus_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="SaveAudioOpus_V3", # frontend expects "SaveAudioOpus" to work
+ display_name="Save Audio(Opus) _V3", # frontend ignores "display_name" for this node
+ category="audio",
+ inputs=[
+ io.Audio.Input("audio"),
+ io.String.Input("filename_prefix", default="audio/ComfyUI"),
+ io.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"),
+ ],
+ hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
+ is_output_node=True,
+ )
+
+ @classmethod
+ def execute(self, audio, filename_prefix="ComfyUI", format="opus", quality="128k") -> io.NodeOutput:
+ return _save_audio(self, audio, filename_prefix, format, quality)
+
+
+class SaveAudio_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="SaveAudio_V3", # frontend expects "SaveAudio" to work
+ display_name="Save Audio _V3", # frontend ignores "display_name" for this node
+ category="audio",
+ inputs=[
+ io.Audio.Input("audio"),
+ io.String.Input("filename_prefix", default="audio/ComfyUI"),
+ ],
+ hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
+ is_output_node=True,
+ )
+
+ @classmethod
+ def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> io.NodeOutput:
+ return _save_audio(cls, audio, filename_prefix, format)
+
+
+class VAEDecodeAudio_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="VAEDecodeAudio_V3",
+ category="latent/audio",
+ inputs=[
+ io.Latent.Input(id="samples"),
+ io.Vae.Input(id="vae"),
+ ],
+ outputs=[io.Audio.Output()],
+ )
+
+ @classmethod
+ def execute(cls, vae, samples) -> io.NodeOutput:
+ audio = vae.decode(samples["samples"]).movedim(-1, 1)
+ std = torch.std(audio, dim=[1, 2], keepdim=True) * 5.0
+ std[std < 1.0] = 1.0
+ audio /= std
+ return io.NodeOutput({"waveform": audio, "sample_rate": 44100})
+
+
+class VAEEncodeAudio_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="VAEEncodeAudio_V3",
+ category="latent/audio",
+ inputs=[
+ io.Audio.Input(id="audio"),
+ io.Vae.Input(id="vae"),
+ ],
+ outputs=[io.Latent.Output()],
+ )
+
+ @classmethod
+ def execute(cls, vae, audio) -> io.NodeOutput:
+ sample_rate = audio["sample_rate"]
+ if 44100 != sample_rate:
+ waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
+ else:
+ waveform = audio["waveform"]
+ return io.NodeOutput({"samples": vae.encode(waveform.movedim(1, -1))})
+
+
+def _save_audio(cls, audio, filename_prefix="ComfyUI", format="flac", quality="128k") -> io.NodeOutput:
+ full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
+ filename_prefix, folder_paths.get_output_directory()
+ )
+
+ # Prepare metadata dictionary
+ metadata = {}
+ if not args.disable_metadata:
+ if cls.hidden.prompt is not None:
+ metadata["prompt"] = json.dumps(cls.hidden.prompt)
+ if cls.hidden.extra_pnginfo is not None:
+ for x in cls.hidden.extra_pnginfo:
+ metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
+
+ # Opus supported sample rates
+ OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
+
+ results = []
+ for batch_number, waveform in enumerate(audio["waveform"].cpu()):
+ filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
+ file = f"{filename_with_batch_num}_{counter:05}_.{format}"
+ output_path = os.path.join(full_output_folder, file)
+
+ # Use original sample rate initially
+ sample_rate = audio["sample_rate"]
+
+ # Handle Opus sample rate requirements
+ if format == "opus":
+ if sample_rate > 48000:
+ sample_rate = 48000
+ elif sample_rate not in OPUS_RATES:
+ # Find the next highest supported rate
+ for rate in sorted(OPUS_RATES):
+ if rate > sample_rate:
+ sample_rate = rate
+ break
+ if sample_rate not in OPUS_RATES: # Fallback if still not supported
+ sample_rate = 48000
+
+ # Resample if necessary
+ if sample_rate != audio["sample_rate"]:
+ waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
+
+ # Create output with specified format
+ output_buffer = BytesIO()
+ output_container = av.open(output_buffer, mode="w", format=format)
+
+ # Set metadata on the container
+ for key, value in metadata.items():
+ output_container.metadata[key] = value
+
+ # Set up the output stream with appropriate properties
+ if format == "opus":
+ out_stream = output_container.add_stream("libopus", rate=sample_rate)
+ if quality == "64k":
+ out_stream.bit_rate = 64000
+ elif quality == "96k":
+ out_stream.bit_rate = 96000
+ elif quality == "128k":
+ out_stream.bit_rate = 128000
+ elif quality == "192k":
+ out_stream.bit_rate = 192000
+ elif quality == "320k":
+ out_stream.bit_rate = 320000
+ elif format == "mp3":
+ out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
+ if quality == "V0":
+ # TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
+ out_stream.codec_context.qscale = 1
+ elif quality == "128k":
+ out_stream.bit_rate = 128000
+ elif quality == "320k":
+ out_stream.bit_rate = 320000
+ else: # format == "flac":
+ out_stream = output_container.add_stream("flac", rate=sample_rate)
+
+ frame = av.AudioFrame.from_ndarray(
+ waveform.movedim(0, 1).reshape(1, -1).float().numpy(),
+ format="flt",
+ layout="mono" if waveform.shape[0] == 1 else "stereo",
+ )
+ frame.sample_rate = sample_rate
+ frame.pts = 0
+ output_container.mux(out_stream.encode(frame))
+
+ # Flush encoder
+ output_container.mux(out_stream.encode(None))
+
+ # Close containers
+ output_container.close()
+
+ # Write the output to file
+ output_buffer.seek(0)
+ with open(output_path, "wb") as f:
+ f.write(output_buffer.getbuffer())
+
+ results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
+ counter += 1
+
+ return io.NodeOutput(ui={"audio": results})
+
+
+NODES_LIST: list[type[io.ComfyNodeV3]] = [
+ ConditioningStableAudio_V3,
+ EmptyLatentAudio_V3,
+ LoadAudio_V3,
+ PreviewAudio_V3,
+ SaveAudioMP3_V3,
+ SaveAudioOpus_V3,
+ SaveAudio_V3,
+ VAEDecodeAudio_V3,
+ VAEEncodeAudio_V3,
+]
diff --git a/comfy_extras/v3/nodes_controlnet.py b/comfy_extras/v3/nodes_controlnet.py
index 12d91a1ce..528acf0fe 100644
--- a/comfy_extras/v3/nodes_controlnet.py
+++ b/comfy_extras/v3/nodes_controlnet.py
@@ -1,5 +1,5 @@
-from comfy.cldm.control_types import UNION_CONTROLNET_TYPES
import comfy.utils
+from comfy.cldm.control_types import UNION_CONTROLNET_TYPES
from comfy_api.v3 import io
@@ -27,11 +27,13 @@ class ControlNetApplyAdvanced_V3(io.ComfyNodeV3):
)
@classmethod
- def execute(cls, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None, extra_concat=[]) -> io.NodeOutput:
+ def execute(
+ cls, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None, extra_concat=[]
+ ) -> io.NodeOutput:
if strength == 0:
return io.NodeOutput(positive, negative)
- control_hint = image.movedim(-1,1)
+ control_hint = image.movedim(-1, 1)
cnets = {}
out = []
@@ -40,16 +42,18 @@ class ControlNetApplyAdvanced_V3(io.ComfyNodeV3):
for t in conditioning:
d = t[1].copy()
- prev_cnet = d.get('control', None)
+ prev_cnet = d.get("control", None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
- c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), vae=vae, extra_concat=extra_concat)
+ c_net = control_net.copy().set_cond_hint(
+ control_hint, strength, (start_percent, end_percent), vae=vae, extra_concat=extra_concat
+ )
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
- d['control'] = c_net
- d['control_apply_to_uncond'] = False
+ d["control"] = c_net
+ d["control_apply_to_uncond"] = False
n = [t[0], d]
c.append(n)
out.append(c)
@@ -107,7 +111,9 @@ class ControlNetInpaintingAliMamaApply_V3(ControlNetApplyAdvanced_V3):
)
@classmethod
- def execute(cls, positive, negative, control_net, vae, image, mask, strength, start_percent, end_percent) -> io.NodeOutput:
+ def execute(
+ cls, positive, negative, control_net, vae, image, mask, strength, start_percent, end_percent
+ ) -> io.NodeOutput:
extra_concat = []
if control_net.concat_mask:
mask = 1.0 - mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
@@ -115,7 +121,17 @@ class ControlNetInpaintingAliMamaApply_V3(ControlNetApplyAdvanced_V3):
image = image * mask_apply.movedim(1, -1).repeat(1, 1, 1, image.shape[3])
extra_concat = [mask]
- return super().execute(positive, negative, control_net, image, strength, start_percent, end_percent, vae=vae, extra_concat=extra_concat)
+ return super().execute(
+ positive,
+ negative,
+ control_net,
+ image,
+ strength,
+ start_percent,
+ end_percent,
+ vae=vae,
+ extra_concat=extra_concat,
+ )
NODES_LIST: list[type[io.ComfyNodeV3]] = [
diff --git a/comfy_extras/v3/nodes_images.py b/comfy_extras/v3/nodes_images.py
index 81790001e..a13be8a80 100644
--- a/comfy_extras/v3/nodes_images.py
+++ b/comfy_extras/v3/nodes_images.py
@@ -1,16 +1,16 @@
+import hashlib
import json
import os
-import torch
-import hashlib
import numpy as np
+import torch
from PIL import Image, ImageOps, ImageSequence
from PIL.PngImagePlugin import PngInfo
-from comfy_api.v3 import io, ui
-from comfy.cli_args import args
import folder_paths
import node_helpers
+from comfy.cli_args import args
+from comfy_api.v3 import io, ui
class SaveImage_V3(io.ComfyNodeV3):
@@ -29,7 +29,8 @@ class SaveImage_V3(io.ComfyNodeV3):
io.String.Input(
"filename_prefix",
default="ComfyUI",
- tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
+ tooltip="The prefix for the file to save. This may include formatting information "
+ "such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
@@ -42,8 +43,8 @@ class SaveImage_V3(io.ComfyNodeV3):
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
- for (batch_number, image) in enumerate(images):
- i = 255. * image.cpu().numpy()
+ for batch_number, image in enumerate(images):
+ i = 255.0 * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata:
@@ -82,13 +83,13 @@ class SaveAnimatedPNG_V3(io.ComfyNodeV3):
@classmethod
def execute(cls, images, fps, compress_level, filename_prefix="ComfyUI") -> io.NodeOutput:
- full_output_folder, filename, counter, subfolder, filename_prefix = (
- folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0])
+ full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
+ filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
pil_images = []
for image in images:
- img = Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8))
+ img = Image.fromarray(np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = None
@@ -96,19 +97,34 @@ class SaveAnimatedPNG_V3(io.ComfyNodeV3):
metadata = PngInfo()
if cls.hidden.prompt is not None:
metadata.add(
- b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(cls.hidden.prompt).encode("latin-1", "strict"), after_idat=True
+ b"comf",
+ "prompt".encode("latin-1", "strict")
+ + b"\0"
+ + json.dumps(cls.hidden.prompt).encode("latin-1", "strict"),
+ after_idat=True,
)
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata.add(
- b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(cls.hidden.extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True
+ b"comf",
+ x.encode("latin-1", "strict")
+ + b"\0"
+ + json.dumps(cls.hidden.extra_pnginfo[x]).encode("latin-1", "strict"),
+ after_idat=True,
)
file = f"{filename}_{counter:05}_.png"
- pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:])
+ pil_images[0].save(
+ os.path.join(full_output_folder, file),
+ pnginfo=metadata,
+ compress_level=compress_level,
+ save_all=True,
+ duration=int(1000.0 / fps),
+ append_images=pil_images[1:],
+ )
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
- return io.NodeOutput(ui={"images": results, "animated": (True,) })
+ return io.NodeOutput(ui={"images": results, "animated": (True,)})
class SaveAnimatedWEBP_V3(io.ComfyNodeV3):
@@ -136,11 +152,13 @@ class SaveAnimatedWEBP_V3(io.ComfyNodeV3):
@classmethod
def execute(cls, images, fps, filename_prefix, lossless, quality, method, num_frames=0) -> io.NodeOutput:
method = cls.COMPRESS_METHODS.get(method)
- full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0])
+ full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
+ filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
+ )
results = []
pil_images = []
for image in images:
- img = Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8))
+ img = Image.fromarray(np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = pil_images[0].getexif()
@@ -148,7 +166,7 @@ class SaveAnimatedWEBP_V3(io.ComfyNodeV3):
if cls.hidden.prompt is not None:
metadata[0x0110] = "prompt:{}".format(json.dumps(cls.hidden.prompt))
if cls.hidden.extra_pnginfo is not None:
- inital_exif = 0x010f
+ inital_exif = 0x010F
for x in cls.hidden.extra_pnginfo:
metadata[inital_exif] = "{}:{}".format(x, json.dumps(cls.hidden.extra_pnginfo[x]))
inital_exif -= 1
@@ -160,8 +178,9 @@ class SaveAnimatedWEBP_V3(io.ComfyNodeV3):
file = f"{filename}_{counter:05}_.webp"
pil_images[i].save(
os.path.join(full_output_folder, file),
- save_all=True, duration=int(1000.0/fps),
- append_images=pil_images[i + 1:i + num_frames],
+ save_all=True,
+ duration=int(1000.0 / fps),
+ append_images=pil_images[i + 1 : i + num_frames],
exif=metadata,
lossless=lossless,
quality=quality,
@@ -228,12 +247,12 @@ class LoadImage_V3(io.ComfyNodeV3):
output_masks = []
w, h = None, None
- excluded_formats = ['MPO']
+ excluded_formats = ["MPO"]
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
- if i.mode == 'I':
+ if i.mode == "I":
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
@@ -246,14 +265,14 @@ class LoadImage_V3(io.ComfyNodeV3):
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
- if 'A' in i.getbands():
- mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
- mask = 1. - torch.from_numpy(mask)
- elif i.mode == 'P' and 'transparency' in i.info:
- mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
- mask = 1. - torch.from_numpy(mask)
+ if "A" in i.getbands():
+ mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0
+ mask = 1.0 - torch.from_numpy(mask)
+ elif i.mode == "P" and "transparency" in i.info:
+ mask = np.array(i.convert("RGBA").getchannel("A")).astype(np.float32) / 255.0
+ mask = 1.0 - torch.from_numpy(mask)
else:
- mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
+ mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
@@ -270,7 +289,7 @@ class LoadImage_V3(io.ComfyNodeV3):
def fingerprint_inputs(s, image):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
- with open(image_path, 'rb') as f:
+ with open(image_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
@@ -288,8 +307,8 @@ class LoadImageOutput_V3(io.ComfyNodeV3):
node_id="LoadImageOutput_V3",
display_name="Load Image (from Outputs) _V3",
description="Load an image from the output folder. "
- "When the refresh button is clicked, the node will update the image list "
- "and automatically select the first image, allowing for easy iteration.",
+ "When the refresh button is clicked, the node will update the image list "
+ "and automatically select the first image, allowing for easy iteration.",
category="image",
inputs=[
io.Combo.Input(
@@ -317,12 +336,12 @@ class LoadImageOutput_V3(io.ComfyNodeV3):
output_masks = []
w, h = None, None
- excluded_formats = ['MPO']
+ excluded_formats = ["MPO"]
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
- if i.mode == 'I':
+ if i.mode == "I":
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
@@ -335,12 +354,12 @@ class LoadImageOutput_V3(io.ComfyNodeV3):
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
- if 'A' in i.getbands():
- mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
- mask = 1. - torch.from_numpy(mask)
- elif i.mode == 'P' and 'transparency' in i.info:
- mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
- mask = 1. - torch.from_numpy(mask)
+ if "A" in i.getbands():
+ mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0
+ mask = 1.0 - torch.from_numpy(mask)
+ elif i.mode == "P" and "transparency" in i.info:
+ mask = np.array(i.convert("RGBA").getchannel("A")).astype(np.float32) / 255.0
+ mask = 1.0 - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image)
@@ -359,7 +378,7 @@ class LoadImageOutput_V3(io.ComfyNodeV3):
def fingerprint_inputs(s, image):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
- with open(image_path, 'rb') as f:
+ with open(image_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
diff --git a/comfy_extras/v3/nodes_primitive.py b/comfy_extras/v3/nodes_primitive.py
new file mode 100644
index 000000000..debfa60d5
--- /dev/null
+++ b/comfy_extras/v3/nodes_primitive.py
@@ -0,0 +1,104 @@
+from __future__ import annotations
+
+import sys
+
+from comfy_api.v3 import io
+
+
+class String_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="PrimitiveString_V3",
+ display_name="String _V3",
+ category="utils/primitive",
+ inputs=[
+ io.String.Input("value"),
+ ],
+ outputs=[io.String.Output()],
+ )
+
+ @classmethod
+ def execute(cls, value: str) -> io.NodeOutput:
+ return io.NodeOutput(value)
+
+
+class StringMultiline_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="PrimitiveStringMultiline_V3",
+ display_name="String (Multiline) _V3",
+ category="utils/primitive",
+ inputs=[
+ io.String.Input("value", multiline=True),
+ ],
+ outputs=[io.String.Output()],
+ )
+
+ @classmethod
+ def execute(cls, value: str) -> io.NodeOutput:
+ return io.NodeOutput(value)
+
+
+class Int_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="PrimitiveInt_V3",
+ display_name="Int _V3",
+ category="utils/primitive",
+ inputs=[
+ io.Int.Input("value", min=-sys.maxsize, max=sys.maxsize, control_after_generate=True),
+ ],
+ outputs=[io.Int.Output()],
+ )
+
+ @classmethod
+ def execute(cls, value: int) -> io.NodeOutput:
+ return io.NodeOutput(value)
+
+
+class Float_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="PrimitiveFloat_V3",
+ display_name="Float _V3",
+ category="utils/primitive",
+ inputs=[
+ io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize),
+ ],
+ outputs=[io.Float.Output()],
+ )
+
+ @classmethod
+ def execute(cls, value: float) -> io.NodeOutput:
+ return io.NodeOutput(value)
+
+
+class Boolean_V3(io.ComfyNodeV3):
+ @classmethod
+ def DEFINE_SCHEMA(cls):
+ return io.SchemaV3(
+ node_id="PrimitiveBoolean_V3",
+ display_name="Boolean _V3",
+ category="utils/primitive",
+ inputs=[
+ io.Boolean.Input("value"),
+ ],
+ outputs=[io.Boolean.Output()],
+ )
+
+ @classmethod
+ def execute(cls, value: bool) -> io.NodeOutput:
+ return io.NodeOutput(value)
+
+
+NODES_LIST: list[type[io.ComfyNodeV3]] = [
+ String_V3,
+ StringMultiline_V3,
+ Int_V3,
+ Float_V3,
+ Boolean_V3,
+]
diff --git a/comfy_extras/v3/nodes_stable_cascade.py b/comfy_extras/v3/nodes_stable_cascade.py
index 36d7e3321..4693ad9eb 100644
--- a/comfy_extras/v3/nodes_stable_cascade.py
+++ b/comfy_extras/v3/nodes_stable_cascade.py
@@ -1,25 +1,25 @@
"""
- This file is part of ComfyUI.
- Copyright (C) 2024 Stability AI
+This file is part of ComfyUI.
+Copyright (C) 2024 Stability AI
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
+This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
+You should have received a copy of the GNU General Public License
+along with this program. If not, see .
"""
import torch
-import nodes
-import comfy.utils
+import comfy.utils
+import nodes
from comfy_api.v3 import io
@@ -30,7 +30,7 @@ class StableCascade_EmptyLatentImage_V3(io.ComfyNodeV3):
node_id="StableCascade_EmptyLatentImage_V3",
category="latent/stable_cascade",
inputs=[
- io.Int.Input("width", default=1024,min=256,max=nodes.MAX_RESOLUTION, step=8),
+ io.Int.Input("width", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8),
io.Int.Input("height", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8),
io.Int.Input("compression", default=42, min=4, max=128, step=1),
io.Int.Input("batch_size", default=1, min=1, max=4096),
@@ -72,9 +72,9 @@ class StableCascade_StageC_VAEEncode_V3(io.ComfyNodeV3):
out_width = (width // compression) * vae.downscale_ratio
out_height = (height // compression) * vae.downscale_ratio
- s = comfy.utils.common_upscale(image.movedim(-1,1), out_width, out_height, "bicubic", "center").movedim(1,-1)
+ s = comfy.utils.common_upscale(image.movedim(-1, 1), out_width, out_height, "bicubic", "center").movedim(1, -1)
- c_latent = vae.encode(s[:,:,:,:3])
+ c_latent = vae.encode(s[:, :, :, :3])
b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2])
return io.NodeOutput({"samples": c_latent}, {"samples": b_latent})
@@ -90,7 +90,7 @@ class StableCascade_StageB_Conditioning_V3(io.ComfyNodeV3):
io.Latent.Input("stage_c"),
],
outputs=[
- io.Conditioning.Output(),
+ io.Conditioning.Output(),
],
)
@@ -99,7 +99,7 @@ class StableCascade_StageB_Conditioning_V3(io.ComfyNodeV3):
c = []
for t in conditioning:
d = t[1].copy()
- d['stable_cascade_prior'] = stage_c['samples']
+ d["stable_cascade_prior"] = stage_c["samples"]
n = [t[0], d]
c.append(n)
return io.NodeOutput(c)
@@ -128,7 +128,7 @@ class StableCascade_SuperResolutionControlnet_V3(io.ComfyNodeV3):
width = image.shape[-2]
height = image.shape[-3]
batch_size = image.shape[0]
- controlnet_input = vae.encode(image[:,:,:,:3]).movedim(1, -1)
+ controlnet_input = vae.encode(image[:, :, :, :3]).movedim(1, -1)
c_latent = torch.zeros([batch_size, 16, height // 16, width // 16])
b_latent = torch.zeros([batch_size, 4, height // 2, width // 2])
diff --git a/comfy_extras/v3/nodes_webcam.py b/comfy_extras/v3/nodes_webcam.py
index 3a4cf8da0..6b65fa7d9 100644
--- a/comfy_extras/v3/nodes_webcam.py
+++ b/comfy_extras/v3/nodes_webcam.py
@@ -1,14 +1,13 @@
import hashlib
-import torch
import numpy as np
+import torch
from PIL import Image, ImageOps, ImageSequence
-from comfy_api.v3 import io
-import nodes
import folder_paths
import node_helpers
-
+import nodes
+from comfy_api.v3 import io
MAX_RESOLUTION = nodes.MAX_RESOLUTION
@@ -51,12 +50,12 @@ class WebcamCapture_V3(io.ComfyNodeV3):
output_masks = []
w, h = None, None
- excluded_formats = ['MPO']
+ excluded_formats = ["MPO"]
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
- if i.mode == 'I':
+ if i.mode == "I":
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
@@ -69,12 +68,12 @@ class WebcamCapture_V3(io.ComfyNodeV3):
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
- if 'A' in i.getbands():
- mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
- mask = 1. - torch.from_numpy(mask)
- elif i.mode == 'P' and 'transparency' in i.info:
- mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
- mask = 1. - torch.from_numpy(mask)
+ if "A" in i.getbands():
+ mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0
+ mask = 1.0 - torch.from_numpy(mask)
+ elif i.mode == "P" and "transparency" in i.info:
+ mask = np.array(i.convert("RGBA").getchannel("A")).astype(np.float32) / 255.0
+ mask = 1.0 - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image)
@@ -93,7 +92,7 @@ class WebcamCapture_V3(io.ComfyNodeV3):
def fingerprint_inputs(s, image, width, height, capture_on_queue):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
- with open(image_path, 'rb') as f:
+ with open(image_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
diff --git a/nodes.py b/nodes.py
index 90d20e6a6..11a1b85cb 100644
--- a/nodes.py
+++ b/nodes.py
@@ -2299,9 +2299,11 @@ def init_builtin_extra_nodes():
"nodes_tcfg.py",
"nodes_v3_test.py",
"nodes_v1_test.py",
+ "v3/nodes_audio.py",
"v3/nodes_controlnet.py",
"v3/nodes_images.py",
"v3/nodes_mask.py",
+ "v3/nodes_primitive.py",
"v3/nodes_webcam.py",
"v3/nodes_stable_cascade.py",
]
diff --git a/pyproject.toml b/pyproject.toml
index 96ead2157..69e84a997 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -12,6 +12,8 @@ documentation = "https://docs.comfy.org/"
[tool.ruff]
lint.select = [
+ "E", # pycodestyle errors
+ "I", # isort
"N805", # invalid-first-argument-name-for-method
"S307", # suspicious-eval-usage
"S102", # exec
@@ -22,3 +24,8 @@ lint.select = [
"F",
]
exclude = ["*.ipynb"]
+line-length = 120
+lint.pycodestyle.ignore-overlong-task-comments = true
+
+[tool.ruff.lint.per-file-ignores]
+"!comfy_extras/v3/*" = ["E", "I"] # enable these rules only for V3 nodes