From 551fe8dceebb07abed486580d8326a6202d0cf7a Mon Sep 17 00:00:00 2001 From: catboxanon <122327233+catboxanon@users.noreply.github.com> Date: Fri, 2 May 2025 05:28:05 -0400 Subject: [PATCH] Add node to extend sigmas (#7901) * Add ExpandSigmas node * Rename, add interpolation functions Co-authored-by: liesen * Move computed interpolation outside loop * Add type hints --------- Co-authored-by: liesen --- comfy_extras/nodes_custom_sampler.py | 51 ++++++++++++++++++++++++++++ 1 file changed, 51 insertions(+) diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index c9689b74..3e5be3d3 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -1,3 +1,4 @@ +import math import comfy.samplers import comfy.sample from comfy.k_diffusion import sampling as k_diffusion_sampling @@ -249,6 +250,55 @@ class SetFirstSigma: sigmas[0] = sigma return (sigmas, ) +class ExtendIntermediateSigmas: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"sigmas": ("SIGMAS", ), + "steps": ("INT", {"default": 2, "min": 1, "max": 100}), + "start_at_sigma": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 20000.0, "step": 0.01, "round": False}), + "end_at_sigma": ("FLOAT", {"default": 12.0, "min": 0.0, "max": 20000.0, "step": 0.01, "round": False}), + "spacing": (['linear', 'cosine', 'sine'],), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/sigmas" + + FUNCTION = "extend" + + def extend(self, sigmas: torch.Tensor, steps: int, start_at_sigma: float, end_at_sigma: float, spacing: str): + if start_at_sigma < 0: + start_at_sigma = float("inf") + + interpolator = { + 'linear': lambda x: x, + 'cosine': lambda x: torch.sin(x*math.pi/2), + 'sine': lambda x: 1 - torch.cos(x*math.pi/2) + }[spacing] + + # linear space for our interpolation function + x = torch.linspace(0, 1, steps + 1, device=sigmas.device)[1:-1] + computed_spacing = interpolator(x) + + extended_sigmas = [] + for i in range(len(sigmas) - 1): + sigma_current = sigmas[i] + sigma_next = sigmas[i+1] + + extended_sigmas.append(sigma_current) + + if end_at_sigma <= sigma_current <= start_at_sigma: + interpolated_steps = computed_spacing * (sigma_next - sigma_current) + sigma_current + extended_sigmas.extend(interpolated_steps.tolist()) + + # Add the last sigma value + if len(sigmas) > 0: + extended_sigmas.append(sigmas[-1]) + + extended_sigmas = torch.FloatTensor(extended_sigmas) + + return (extended_sigmas,) + class KSamplerSelect: @classmethod def INPUT_TYPES(s): @@ -735,6 +785,7 @@ NODE_CLASS_MAPPINGS = { "SplitSigmasDenoise": SplitSigmasDenoise, "FlipSigmas": FlipSigmas, "SetFirstSigma": SetFirstSigma, + "ExtendIntermediateSigmas": ExtendIntermediateSigmas, "CFGGuider": CFGGuider, "DualCFGGuider": DualCFGGuider,