Initialize the unet directly on the target device.

This commit is contained in:
comfyanonymous
2023-07-29 14:51:56 -04:00
parent ad5866b02b
commit 4b957a0010
6 changed files with 110 additions and 103 deletions

View File

@@ -52,9 +52,9 @@ def init_(tensor):
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out, dtype=None):
def __init__(self, dim_in, dim_out, dtype=None, device=None):
super().__init__()
self.proj = comfy.ops.Linear(dim_in, dim_out * 2, dtype=dtype)
self.proj = comfy.ops.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
@@ -62,19 +62,19 @@ class GEGLU(nn.Module):
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
comfy.ops.Linear(dim, inner_dim, dtype=dtype),
comfy.ops.Linear(dim, inner_dim, dtype=dtype, device=device),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim, dtype=dtype)
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
comfy.ops.Linear(inner_dim, dim_out, dtype=dtype)
comfy.ops.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
@@ -90,8 +90,8 @@ def zero_module(module):
return module
def Normalize(in_channels, dtype=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype)
def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
class SpatialSelfAttention(nn.Module):
@@ -148,7 +148,7 @@ class SpatialSelfAttention(nn.Module):
class CrossAttentionBirchSan(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@@ -156,12 +156,12 @@ class CrossAttentionBirchSan(nn.Module):
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
@@ -245,7 +245,7 @@ class CrossAttentionBirchSan(nn.Module):
class CrossAttentionDoggettx(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@@ -253,12 +253,12 @@ class CrossAttentionDoggettx(nn.Module):
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
@@ -343,7 +343,7 @@ class CrossAttentionDoggettx(nn.Module):
return self.to_out(r2)
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@@ -351,12 +351,12 @@ class CrossAttention(nn.Module):
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
@@ -399,7 +399,7 @@ class CrossAttention(nn.Module):
class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None):
super().__init__()
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
f"{heads} heads.")
@@ -409,11 +409,11 @@ class MemoryEfficientCrossAttention(nn.Module):
self.heads = heads
self.dim_head = dim_head
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype), nn.Dropout(dropout))
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, value=None, mask=None):
@@ -450,7 +450,7 @@ class MemoryEfficientCrossAttention(nn.Module):
return self.to_out(out)
class CrossAttentionPytorch(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@@ -458,11 +458,11 @@ class CrossAttentionPytorch(nn.Module):
self.heads = heads
self.dim_head = dim_head
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype), nn.Dropout(dropout))
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, value=None, mask=None):
@@ -508,17 +508,17 @@ else:
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
disable_self_attn=False, dtype=None):
disable_self_attn=False, dtype=None, device=None):
super().__init__()
self.disable_self_attn = disable_self_attn
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype)
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim, dtype=dtype)
self.norm2 = nn.LayerNorm(dim, dtype=dtype)
self.norm3 = nn.LayerNorm(dim, dtype=dtype)
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
self.checkpoint = checkpoint
self.n_heads = n_heads
self.d_head = d_head
@@ -648,34 +648,34 @@ class SpatialTransformer(nn.Module):
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None,
disable_self_attn=False, use_linear=False,
use_checkpoint=True, dtype=None):
use_checkpoint=True, dtype=None, device=None):
super().__init__()
if exists(context_dim) and not isinstance(context_dim, list):
context_dim = [context_dim] * depth
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels, dtype=dtype)
self.norm = Normalize(in_channels, dtype=dtype, device=device)
if not use_linear:
self.proj_in = nn.Conv2d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0, dtype=dtype)
padding=0, dtype=dtype, device=device)
else:
self.proj_in = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype)
self.proj_in = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype)
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device)
for d in range(depth)]
)
if not use_linear:
self.proj_out = nn.Conv2d(inner_dim,in_channels,
kernel_size=1,
stride=1,
padding=0, dtype=dtype)
padding=0, dtype=dtype, device=device)
else:
self.proj_out = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype)
self.proj_out = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.use_linear = use_linear
def forward(self, x, context=None, transformer_options={}):