mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-14 13:35:05 +00:00
P2 of qwen edit model. (#9412)
* P2 of qwen edit model. * Typo. * Fix normal qwen. * Fix. * Make the TextEncodeQwenImageEdit also set the ref latent. If you don't want it to set the ref latent and want to use the ReferenceLatent node with your custom latent instead just disconnect the VAE.
This commit is contained in:
@@ -15,13 +15,27 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_7b", tokenizer=Qwen25_7BVLITokenizer)
|
||||
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
||||
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image \\(color, shape, size, texture, objects, background\\), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None,**kwargs):
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs):
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
if len(images) > 0:
|
||||
llama_text = self.llama_template_images.format(text)
|
||||
else:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
|
||||
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
|
||||
key_name = next(iter(tokens))
|
||||
embed_count = 0
|
||||
qwen_tokens = tokens[key_name]
|
||||
for r in qwen_tokens:
|
||||
for i in range(len(r)):
|
||||
if r[i][0] == 151655:
|
||||
if len(images) > embed_count:
|
||||
r[i] = ({"type": "image", "data": images[embed_count], "original_type": "image"},) + r[i][1:]
|
||||
embed_count += 1
|
||||
return tokens
|
||||
|
||||
|
||||
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
|
||||
|
Reference in New Issue
Block a user