Merge branch 'master' into worksplit-multigpu

This commit is contained in:
Jedrzej Kosinski 2025-06-24 00:49:24 -05:00
commit 443a795850
11 changed files with 158 additions and 23 deletions

View File

@ -273,6 +273,8 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
#### DirectML (AMD Cards on Windows)
This is very badly supported and is not recommended. There are some unofficial builds of pytorch ROCm on windows that exist that will give you a much better experience than this. This readme will be updated once official pytorch ROCm builds for windows come out.
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
#### Ascend NPUs

View File

@ -123,6 +123,8 @@ class ControlNetFlux(Flux):
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
else:
y = y[:, :self.params.vec_in_dim]
# running on sequences img
img = self.img_in(img)

View File

@ -118,7 +118,7 @@ class Modulation(nn.Module):
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
if modulation_dims is None:
if m_add is not None:
return tensor * m_mult + m_add
return torch.addcmul(m_add, tensor, m_mult)
else:
return tensor * m_mult
else:

View File

@ -31,7 +31,7 @@ def dynamic_slice(
starts: List[int],
sizes: List[int],
) -> Tensor:
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
slicing = tuple(slice(start, start + size) for start, size in zip(starts, sizes))
return x[slicing]
class AttnChunk(NamedTuple):

View File

@ -1024,6 +1024,8 @@ class CosmosPredict2(BaseModel):
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
if denoise_mask.ndim <= 4:
return timestep
condition_video_mask_B_1_T_1_1 = denoise_mask.mean(dim=[1, 3, 4], keepdim=True)
c_noise_B_1_T_1_1 = 0.0 * (1.0 - condition_video_mask_B_1_T_1_1) + timestep.reshape(timestep.shape[0], 1, 1, 1, 1) * condition_video_mask_B_1_T_1_1
out = c_noise_B_1_T_1_1.squeeze(dim=[1, 3, 4])

View File

@ -11,6 +11,43 @@ from comfy_config.types import (
PyProjectSettings
)
def validate_and_extract_os_classifiers(classifiers: list) -> list:
os_classifiers = [c for c in classifiers if c.startswith("Operating System :: ")]
if not os_classifiers:
return []
os_values = [c[len("Operating System :: ") :] for c in os_classifiers]
valid_os_prefixes = {"Microsoft", "POSIX", "MacOS", "OS Independent"}
for os_value in os_values:
if not any(os_value.startswith(prefix) for prefix in valid_os_prefixes):
return []
return os_values
def validate_and_extract_accelerator_classifiers(classifiers: list) -> list:
accelerator_classifiers = [c for c in classifiers if c.startswith("Environment ::")]
if not accelerator_classifiers:
return []
accelerator_values = [c[len("Environment :: ") :] for c in accelerator_classifiers]
valid_accelerators = {
"GPU :: NVIDIA CUDA",
"GPU :: AMD ROCm",
"GPU :: Intel Arc",
"NPU :: Huawei Ascend",
"GPU :: Apple Metal",
}
for accelerator_value in accelerator_values:
if accelerator_value not in valid_accelerators:
return []
return accelerator_values
"""
Extract configuration from a custom node directory's pyproject.toml file or a Python file.
@ -78,6 +115,24 @@ def extract_node_configuration(path) -> Optional[PyProjectConfig]:
tool_data = raw_settings.tool
comfy_data = tool_data.get("comfy", {}) if tool_data else {}
dependencies = project_data.get("dependencies", [])
supported_comfyui_frontend_version = ""
for dep in dependencies:
if isinstance(dep, str) and dep.startswith("comfyui-frontend-package"):
supported_comfyui_frontend_version = dep.removeprefix("comfyui-frontend-package")
break
supported_comfyui_version = comfy_data.get("requires-comfyui", "")
classifiers = project_data.get('classifiers', [])
supported_os = validate_and_extract_os_classifiers(classifiers)
supported_accelerators = validate_and_extract_accelerator_classifiers(classifiers)
project_data['supported_os'] = supported_os
project_data['supported_accelerators'] = supported_accelerators
project_data['supported_comfyui_frontend_version'] = supported_comfyui_frontend_version
project_data['supported_comfyui_version'] = supported_comfyui_version
return PyProjectConfig(project=project_data, tool_comfy=comfy_data)

View File

@ -51,7 +51,7 @@ class ComfyConfig(BaseModel):
models: List[Model] = Field(default_factory=list, alias="Models")
includes: List[str] = Field(default_factory=list)
web: Optional[str] = None
banner_url: str = ""
class License(BaseModel):
file: str = ""
@ -66,6 +66,10 @@ class ProjectConfig(BaseModel):
dependencies: List[str] = Field(default_factory=list)
license: License = Field(default_factory=License)
urls: URLs = Field(default_factory=URLs)
supported_os: List[str] = Field(default_factory=list)
supported_accelerators: List[str] = Field(default_factory=list)
supported_comfyui_version: str = ""
supported_comfyui_frontend_version: str = ""
@field_validator('license', mode='before')
@classmethod

View File

@ -304,10 +304,23 @@ Optional spacing can be added between images.
image2.movedim(-1, 1), target_w, target_h, "lanczos", "disabled"
).movedim(1, -1)
color_map = {
"white": 1.0,
"black": 0.0,
"red": (1.0, 0.0, 0.0),
"green": (0.0, 1.0, 0.0),
"blue": (0.0, 0.0, 1.0),
}
color_val = color_map[spacing_color]
# When not matching sizes, pad to align non-concat dimensions
if not match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
pad_value = 0.0
if not isinstance(color_val, tuple):
pad_value = color_val
if direction in ["left", "right"]:
# For horizontal concat, pad heights to match
@ -316,11 +329,11 @@ Optional spacing can be added between images.
if h1 < target_h:
pad_h = target_h - h1
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image1 = torch.nn.functional.pad(image1, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=0.0)
image1 = torch.nn.functional.pad(image1, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=pad_value)
if h2 < target_h:
pad_h = target_h - h2
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image2 = torch.nn.functional.pad(image2, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=0.0)
image2 = torch.nn.functional.pad(image2, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=pad_value)
else: # up, down
# For vertical concat, pad widths to match
if w1 != w2:
@ -328,11 +341,11 @@ Optional spacing can be added between images.
if w1 < target_w:
pad_w = target_w - w1
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image1 = torch.nn.functional.pad(image1, (0, 0, pad_left, pad_right), mode='constant', value=0.0)
image1 = torch.nn.functional.pad(image1, (0, 0, pad_left, pad_right), mode='constant', value=pad_value)
if w2 < target_w:
pad_w = target_w - w2
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image2 = torch.nn.functional.pad(image2, (0, 0, pad_left, pad_right), mode='constant', value=0.0)
image2 = torch.nn.functional.pad(image2, (0, 0, pad_left, pad_right), mode='constant', value=pad_value)
# Ensure same number of channels
if image1.shape[-1] != image2.shape[-1]:
@ -366,15 +379,6 @@ Optional spacing can be added between images.
if spacing_width > 0:
spacing_width = spacing_width + (spacing_width % 2) # Ensure even
color_map = {
"white": 1.0,
"black": 0.0,
"red": (1.0, 0.0, 0.0),
"green": (0.0, 1.0, 0.0),
"blue": (0.0, 0.0, 1.0),
}
color_val = color_map[spacing_color]
if direction in ["left", "right"]:
spacing_shape = (
image1.shape[0],
@ -410,6 +414,62 @@ Optional spacing can be added between images.
concat_dim = 2 if direction in ["left", "right"] else 1
return (torch.cat(images, dim=concat_dim),)
class ResizeAndPadImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"target_width": ("INT", {
"default": 512,
"min": 1,
"max": MAX_RESOLUTION,
"step": 1
}),
"target_height": ("INT", {
"default": 512,
"min": 1,
"max": MAX_RESOLUTION,
"step": 1
}),
"padding_color": (["white", "black"],),
"interpolation": (["area", "bicubic", "nearest-exact", "bilinear", "lanczos"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "resize_and_pad"
CATEGORY = "image/transform"
def resize_and_pad(self, image, target_width, target_height, padding_color, interpolation):
batch_size, orig_height, orig_width, channels = image.shape
scale_w = target_width / orig_width
scale_h = target_height / orig_height
scale = min(scale_w, scale_h)
new_width = int(orig_width * scale)
new_height = int(orig_height * scale)
image_permuted = image.permute(0, 3, 1, 2)
resized = comfy.utils.common_upscale(image_permuted, new_width, new_height, interpolation, "disabled")
pad_value = 0.0 if padding_color == "black" else 1.0
padded = torch.full(
(batch_size, channels, target_height, target_width),
pad_value,
dtype=image.dtype,
device=image.device
)
y_offset = (target_height - new_height) // 2
x_offset = (target_width - new_width) // 2
padded[:, :, y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized
output = padded.permute(0, 2, 3, 1)
return (output,)
class SaveSVGNode:
"""
@ -532,5 +592,6 @@ NODE_CLASS_MAPPINGS = {
"SaveAnimatedPNG": SaveAnimatedPNG,
"SaveSVGNode": SaveSVGNode,
"ImageStitch": ImageStitch,
"ResizeAndPadImage": ResizeAndPadImage,
"GetImageSize": GetImageSize,
}

View File

@ -429,17 +429,20 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
logging.error(f"!!! Exception during processing !!! {ex}")
logging.error(traceback.format_exc())
tips = ""
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
tips = "This error means you ran out of memory on your GPU.\n\nTIPS: If the workflow worked before you might have accidentally set the batch_size to a large number."
logging.error("Got an OOM, unloading all loaded models.")
comfy.model_management.unload_all_models()
error_details = {
"node_id": real_node_id,
"exception_message": str(ex),
"exception_message": "{}\n{}".format(ex, tips),
"exception_type": exception_type,
"traceback": traceback.format_tb(tb),
"current_inputs": input_data_formatted
}
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
logging.error("Got an OOM, unloading all loaded models.")
comfy.model_management.unload_all_models()
return (ExecutionResult.FAILURE, error_details, ex)

View File

@ -185,7 +185,13 @@ def prompt_worker(q, server_instance):
current_time = time.perf_counter()
execution_time = current_time - execution_start_time
logging.info("Prompt executed in {:.2f} seconds".format(execution_time))
# Log Time in a more readable way after 10 minutes
if execution_time > 600:
execution_time = time.strftime("%H:%M:%S", time.gmtime(execution_time))
logging.info(f"Prompt executed in {execution_time}")
else:
logging.info("Prompt executed in {:.2f} seconds".format(execution_time))
flags = q.get_flags()
free_memory = flags.get("free_memory", False)

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.21.7
comfyui-workflow-templates==0.1.28
comfyui-frontend-package==1.22.2
comfyui-workflow-templates==0.1.29
comfyui-embedded-docs==0.2.2
torch
torchsde