mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 08:16:44 +00:00
Add WAN ATI support (#8874)
* Add WAN ATI support * Fixes * Fix length * Remove extra functions * Fix * Fix * Ruff fix * Remove torch.no_grad * Add batch trajectory logic * Scale inputs before and after motion patch * Batch image/trajectory * Ruff fix * Clean up
This commit is contained in:
parent
69cb57b342
commit
4293e4da21
@ -698,6 +698,26 @@ def resize_to_batch_size(tensor, batch_size):
|
|||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
def resize_list_to_batch_size(l, batch_size):
|
||||||
|
in_batch_size = len(l)
|
||||||
|
if in_batch_size == batch_size or in_batch_size == 0:
|
||||||
|
return l
|
||||||
|
|
||||||
|
if batch_size <= 1:
|
||||||
|
return l[:batch_size]
|
||||||
|
|
||||||
|
output = []
|
||||||
|
if batch_size < in_batch_size:
|
||||||
|
scale = (in_batch_size - 1) / (batch_size - 1)
|
||||||
|
for i in range(batch_size):
|
||||||
|
output.append(l[min(round(i * scale), in_batch_size - 1)])
|
||||||
|
else:
|
||||||
|
scale = in_batch_size / batch_size
|
||||||
|
for i in range(batch_size):
|
||||||
|
output.append(l[min(math.floor((i + 0.5) * scale), in_batch_size - 1)])
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
def convert_sd_to(state_dict, dtype):
|
def convert_sd_to(state_dict, dtype):
|
||||||
keys = list(state_dict.keys())
|
keys = list(state_dict.keys())
|
||||||
for k in keys:
|
for k in keys:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import math
|
||||||
import nodes
|
import nodes
|
||||||
import node_helpers
|
import node_helpers
|
||||||
import torch
|
import torch
|
||||||
@ -5,7 +6,9 @@ import comfy.model_management
|
|||||||
import comfy.utils
|
import comfy.utils
|
||||||
import comfy.latent_formats
|
import comfy.latent_formats
|
||||||
import comfy.clip_vision
|
import comfy.clip_vision
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
class WanImageToVideo:
|
class WanImageToVideo:
|
||||||
@classmethod
|
@classmethod
|
||||||
@ -383,7 +386,307 @@ class WanPhantomSubjectToVideo:
|
|||||||
out_latent["samples"] = latent
|
out_latent["samples"] = latent
|
||||||
return (positive, cond2, negative, out_latent)
|
return (positive, cond2, negative, out_latent)
|
||||||
|
|
||||||
|
def parse_json_tracks(tracks):
|
||||||
|
"""Parse JSON track data into a standardized format"""
|
||||||
|
tracks_data = []
|
||||||
|
try:
|
||||||
|
# If tracks is a string, try to parse it as JSON
|
||||||
|
if isinstance(tracks, str):
|
||||||
|
parsed = json.loads(tracks.replace("'", '"'))
|
||||||
|
tracks_data.extend(parsed)
|
||||||
|
else:
|
||||||
|
# If tracks is a list of strings, parse each one
|
||||||
|
for track_str in tracks:
|
||||||
|
parsed = json.loads(track_str.replace("'", '"'))
|
||||||
|
tracks_data.append(parsed)
|
||||||
|
|
||||||
|
# Check if we have a single track (dict with x,y) or a list of tracks
|
||||||
|
if tracks_data and isinstance(tracks_data[0], dict) and 'x' in tracks_data[0]:
|
||||||
|
# Single track detected, wrap it in a list
|
||||||
|
tracks_data = [tracks_data]
|
||||||
|
elif tracks_data and isinstance(tracks_data[0], list) and tracks_data[0] and isinstance(tracks_data[0][0], dict) and 'x' in tracks_data[0][0]:
|
||||||
|
# Already a list of tracks, nothing to do
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
# Unexpected format
|
||||||
|
pass
|
||||||
|
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
tracks_data = []
|
||||||
|
return tracks_data
|
||||||
|
|
||||||
|
def process_tracks(tracks_np: np.ndarray, frame_size: Tuple[int, int], num_frames, quant_multi: int = 8, **kwargs):
|
||||||
|
# tracks: shape [t, h, w, 3] => samples align with 24 fps, model trained with 16 fps.
|
||||||
|
# frame_size: tuple (W, H)
|
||||||
|
tracks = torch.from_numpy(tracks_np).float()
|
||||||
|
|
||||||
|
if tracks.shape[1] == 121:
|
||||||
|
tracks = torch.permute(tracks, (1, 0, 2, 3))
|
||||||
|
|
||||||
|
tracks, visibles = tracks[..., :2], tracks[..., 2:3]
|
||||||
|
|
||||||
|
short_edge = min(*frame_size)
|
||||||
|
|
||||||
|
frame_center = torch.tensor([*frame_size]).type_as(tracks) / 2
|
||||||
|
tracks = tracks - frame_center
|
||||||
|
|
||||||
|
tracks = tracks / short_edge * 2
|
||||||
|
|
||||||
|
visibles = visibles * 2 - 1
|
||||||
|
|
||||||
|
trange = torch.linspace(-1, 1, tracks.shape[0]).view(-1, 1, 1, 1).expand(*visibles.shape)
|
||||||
|
|
||||||
|
out_ = torch.cat([trange, tracks, visibles], dim=-1).view(121, -1, 4)
|
||||||
|
|
||||||
|
out_0 = out_[:1]
|
||||||
|
|
||||||
|
out_l = out_[1:] # 121 => 120 | 1
|
||||||
|
a = 120 // math.gcd(120, num_frames)
|
||||||
|
b = num_frames // math.gcd(120, num_frames)
|
||||||
|
out_l = torch.repeat_interleave(out_l, b, dim=0)[1::a] # 120 => 120 * b => 120 * b / a == F
|
||||||
|
|
||||||
|
final_result = torch.cat([out_0, out_l], dim=0)
|
||||||
|
|
||||||
|
return final_result
|
||||||
|
|
||||||
|
FIXED_LENGTH = 121
|
||||||
|
def pad_pts(tr):
|
||||||
|
"""Convert list of {x,y} to (FIXED_LENGTH,1,3) array, padding/truncating."""
|
||||||
|
pts = np.array([[p['x'], p['y'], 1] for p in tr], dtype=np.float32)
|
||||||
|
n = pts.shape[0]
|
||||||
|
if n < FIXED_LENGTH:
|
||||||
|
pad = np.zeros((FIXED_LENGTH - n, 3), dtype=np.float32)
|
||||||
|
pts = np.vstack((pts, pad))
|
||||||
|
else:
|
||||||
|
pts = pts[:FIXED_LENGTH]
|
||||||
|
return pts.reshape(FIXED_LENGTH, 1, 3)
|
||||||
|
|
||||||
|
def ind_sel(target: torch.Tensor, ind: torch.Tensor, dim: int = 1):
|
||||||
|
"""Index selection utility function"""
|
||||||
|
assert (
|
||||||
|
len(ind.shape) > dim
|
||||||
|
), "Index must have the target dim, but get dim: %d, ind shape: %s" % (dim, str(ind.shape))
|
||||||
|
|
||||||
|
target = target.expand(
|
||||||
|
*tuple(
|
||||||
|
[ind.shape[k] if target.shape[k] == 1 else -1 for k in range(dim)]
|
||||||
|
+ [
|
||||||
|
-1,
|
||||||
|
]
|
||||||
|
* (len(target.shape) - dim)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
ind_pad = ind
|
||||||
|
|
||||||
|
if len(target.shape) > dim + 1:
|
||||||
|
for _ in range(len(target.shape) - (dim + 1)):
|
||||||
|
ind_pad = ind_pad.unsqueeze(-1)
|
||||||
|
ind_pad = ind_pad.expand(*(-1,) * (dim + 1), *target.shape[(dim + 1) : :])
|
||||||
|
|
||||||
|
return torch.gather(target, dim=dim, index=ind_pad)
|
||||||
|
|
||||||
|
def merge_final(vert_attr: torch.Tensor, weight: torch.Tensor, vert_assign: torch.Tensor):
|
||||||
|
"""Merge vertex attributes with weights"""
|
||||||
|
target_dim = len(vert_assign.shape) - 1
|
||||||
|
if len(vert_attr.shape) == 2:
|
||||||
|
assert vert_attr.shape[0] > vert_assign.max()
|
||||||
|
new_shape = [1] * target_dim + list(vert_attr.shape)
|
||||||
|
tensor = vert_attr.reshape(new_shape)
|
||||||
|
sel_attr = ind_sel(tensor, vert_assign.type(torch.long), dim=target_dim)
|
||||||
|
else:
|
||||||
|
assert vert_attr.shape[1] > vert_assign.max()
|
||||||
|
new_shape = [vert_attr.shape[0]] + [1] * (target_dim - 1) + list(vert_attr.shape[1:])
|
||||||
|
tensor = vert_attr.reshape(new_shape)
|
||||||
|
sel_attr = ind_sel(tensor, vert_assign.type(torch.long), dim=target_dim)
|
||||||
|
|
||||||
|
final_attr = torch.sum(sel_attr * weight.unsqueeze(-1), dim=-2)
|
||||||
|
return final_attr
|
||||||
|
|
||||||
|
|
||||||
|
def _patch_motion_single(
|
||||||
|
tracks: torch.FloatTensor, # (B, T, N, 4)
|
||||||
|
vid: torch.FloatTensor, # (C, T, H, W)
|
||||||
|
temperature: float,
|
||||||
|
vae_divide: tuple,
|
||||||
|
topk: int,
|
||||||
|
):
|
||||||
|
"""Apply motion patching based on tracks"""
|
||||||
|
_, T, H, W = vid.shape
|
||||||
|
N = tracks.shape[2]
|
||||||
|
_, tracks_xy, visible = torch.split(
|
||||||
|
tracks, [1, 2, 1], dim=-1
|
||||||
|
) # (B, T, N, 2) | (B, T, N, 1)
|
||||||
|
tracks_n = tracks_xy / torch.tensor([W / min(H, W), H / min(H, W)], device=tracks_xy.device)
|
||||||
|
tracks_n = tracks_n.clamp(-1, 1)
|
||||||
|
visible = visible.clamp(0, 1)
|
||||||
|
|
||||||
|
xx = torch.linspace(-W / min(H, W), W / min(H, W), W)
|
||||||
|
yy = torch.linspace(-H / min(H, W), H / min(H, W), H)
|
||||||
|
|
||||||
|
grid = torch.stack(torch.meshgrid(yy, xx, indexing="ij")[::-1], dim=-1).to(
|
||||||
|
tracks_xy.device
|
||||||
|
)
|
||||||
|
|
||||||
|
tracks_pad = tracks_xy[:, 1:]
|
||||||
|
visible_pad = visible[:, 1:]
|
||||||
|
|
||||||
|
visible_align = visible_pad.view(T - 1, 4, *visible_pad.shape[2:]).sum(1)
|
||||||
|
tracks_align = (tracks_pad * visible_pad).view(T - 1, 4, *tracks_pad.shape[2:]).sum(
|
||||||
|
1
|
||||||
|
) / (visible_align + 1e-5)
|
||||||
|
dist_ = (
|
||||||
|
(tracks_align[:, None, None] - grid[None, :, :, None]).pow(2).sum(-1)
|
||||||
|
) # T, H, W, N
|
||||||
|
weight = torch.exp(-dist_ * temperature) * visible_align.clamp(0, 1).view(
|
||||||
|
T - 1, 1, 1, N
|
||||||
|
)
|
||||||
|
vert_weight, vert_index = torch.topk(
|
||||||
|
weight, k=min(topk, weight.shape[-1]), dim=-1
|
||||||
|
)
|
||||||
|
|
||||||
|
grid_mode = "bilinear"
|
||||||
|
point_feature = torch.nn.functional.grid_sample(
|
||||||
|
vid.permute(1, 0, 2, 3)[:1],
|
||||||
|
tracks_n[:, :1].type(vid.dtype),
|
||||||
|
mode=grid_mode,
|
||||||
|
padding_mode="zeros",
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
point_feature = point_feature.squeeze(0).squeeze(1).permute(1, 0) # N, C=16
|
||||||
|
|
||||||
|
out_feature = merge_final(point_feature, vert_weight, vert_index).permute(3, 0, 1, 2) # T - 1, H, W, C => C, T - 1, H, W
|
||||||
|
out_weight = vert_weight.sum(-1) # T - 1, H, W
|
||||||
|
|
||||||
|
# out feature -> already soft weighted
|
||||||
|
mix_feature = out_feature + vid[:, 1:] * (1 - out_weight.clamp(0, 1))
|
||||||
|
|
||||||
|
out_feature_full = torch.cat([vid[:, :1], mix_feature], dim=1) # C, T, H, W
|
||||||
|
out_mask_full = torch.cat([torch.ones_like(out_weight[:1]), out_weight], dim=0) # T, H, W
|
||||||
|
|
||||||
|
return out_mask_full[None].expand(vae_divide[0], -1, -1, -1), out_feature_full
|
||||||
|
|
||||||
|
|
||||||
|
def patch_motion(
|
||||||
|
tracks: torch.FloatTensor, # (B, TB, T, N, 4)
|
||||||
|
vid: torch.FloatTensor, # (C, T, H, W)
|
||||||
|
temperature: float = 220.0,
|
||||||
|
vae_divide: tuple = (4, 16),
|
||||||
|
topk: int = 2,
|
||||||
|
):
|
||||||
|
B = len(tracks)
|
||||||
|
|
||||||
|
# Process each batch separately
|
||||||
|
out_masks = []
|
||||||
|
out_features = []
|
||||||
|
|
||||||
|
for b in range(B):
|
||||||
|
mask, feature = _patch_motion_single(
|
||||||
|
tracks[b], # (T, N, 4)
|
||||||
|
vid[b], # (C, T, H, W)
|
||||||
|
temperature,
|
||||||
|
vae_divide,
|
||||||
|
topk
|
||||||
|
)
|
||||||
|
out_masks.append(mask)
|
||||||
|
out_features.append(feature)
|
||||||
|
|
||||||
|
# Stack results: (B, C, T, H, W)
|
||||||
|
out_mask_full = torch.stack(out_masks, dim=0)
|
||||||
|
out_feature_full = torch.stack(out_features, dim=0)
|
||||||
|
|
||||||
|
return out_mask_full, out_feature_full
|
||||||
|
|
||||||
|
class WanTrackToVideo:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": {
|
||||||
|
"positive": ("CONDITIONING", ),
|
||||||
|
"negative": ("CONDITIONING", ),
|
||||||
|
"vae": ("VAE", ),
|
||||||
|
"tracks": ("STRING", {"multiline": True, "default": "[]"}),
|
||||||
|
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||||
|
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||||
|
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
|
||||||
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
||||||
|
"temperature": ("FLOAT", {"default": 220.0, "min": 1.0, "max": 1000.0, "step": 0.1}),
|
||||||
|
"topk": ("INT", {"default": 2, "min": 1, "max": 10}),
|
||||||
|
"start_image": ("IMAGE", ),
|
||||||
|
},
|
||||||
|
"optional": {
|
||||||
|
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
||||||
|
}}
|
||||||
|
|
||||||
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
||||||
|
RETURN_NAMES = ("positive", "negative", "latent")
|
||||||
|
FUNCTION = "encode"
|
||||||
|
|
||||||
|
CATEGORY = "conditioning/video_models"
|
||||||
|
|
||||||
|
def encode(self, positive, negative, vae, tracks, width, height, length, batch_size,
|
||||||
|
temperature, topk, start_image=None, clip_vision_output=None):
|
||||||
|
|
||||||
|
tracks_data = parse_json_tracks(tracks)
|
||||||
|
|
||||||
|
if not tracks_data:
|
||||||
|
return WanImageToVideo().encode(positive, negative, vae, width, height, length, batch_size, start_image=start_image, clip_vision_output=clip_vision_output)
|
||||||
|
|
||||||
|
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8],
|
||||||
|
device=comfy.model_management.intermediate_device())
|
||||||
|
|
||||||
|
if isinstance(tracks_data[0][0], dict):
|
||||||
|
tracks_data = [tracks_data]
|
||||||
|
|
||||||
|
processed_tracks = []
|
||||||
|
for batch in tracks_data:
|
||||||
|
arrs = []
|
||||||
|
for track in batch:
|
||||||
|
pts = pad_pts(track)
|
||||||
|
arrs.append(pts)
|
||||||
|
|
||||||
|
tracks_np = np.stack(arrs, axis=0)
|
||||||
|
processed_tracks.append(process_tracks(tracks_np, (width, height), length - 1).unsqueeze(0))
|
||||||
|
|
||||||
|
if start_image is not None:
|
||||||
|
start_image = comfy.utils.common_upscale(start_image[:batch_size].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||||
|
videos = torch.ones((start_image.shape[0], length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5
|
||||||
|
for i in range(start_image.shape[0]):
|
||||||
|
videos[i, 0] = start_image[i]
|
||||||
|
|
||||||
|
latent_videos = []
|
||||||
|
videos = comfy.utils.resize_to_batch_size(videos, batch_size)
|
||||||
|
for i in range(batch_size):
|
||||||
|
latent_videos += [vae.encode(videos[i, :, :, :, :3])]
|
||||||
|
y = torch.cat(latent_videos, dim=0)
|
||||||
|
|
||||||
|
# Scale latent since patch_motion is non-linear
|
||||||
|
y = comfy.latent_formats.Wan21().process_in(y)
|
||||||
|
|
||||||
|
processed_tracks = comfy.utils.resize_list_to_batch_size(processed_tracks, batch_size)
|
||||||
|
res = patch_motion(
|
||||||
|
processed_tracks, y, temperature=temperature, topk=topk, vae_divide=(4, 16)
|
||||||
|
)
|
||||||
|
|
||||||
|
mask, concat_latent_image = res
|
||||||
|
concat_latent_image = comfy.latent_formats.Wan21().process_out(concat_latent_image)
|
||||||
|
mask = -mask + 1.0 # Invert mask to match expected format
|
||||||
|
positive = node_helpers.conditioning_set_values(positive,
|
||||||
|
{"concat_mask": mask,
|
||||||
|
"concat_latent_image": concat_latent_image})
|
||||||
|
negative = node_helpers.conditioning_set_values(negative,
|
||||||
|
{"concat_mask": mask,
|
||||||
|
"concat_latent_image": concat_latent_image})
|
||||||
|
|
||||||
|
if clip_vision_output is not None:
|
||||||
|
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
|
||||||
|
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
|
||||||
|
|
||||||
|
out_latent = {}
|
||||||
|
out_latent["samples"] = latent
|
||||||
|
return (positive, negative, out_latent)
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = {
|
NODE_CLASS_MAPPINGS = {
|
||||||
|
"WanTrackToVideo": WanTrackToVideo,
|
||||||
"WanImageToVideo": WanImageToVideo,
|
"WanImageToVideo": WanImageToVideo,
|
||||||
"WanFunControlToVideo": WanFunControlToVideo,
|
"WanFunControlToVideo": WanFunControlToVideo,
|
||||||
"WanFunInpaintToVideo": WanFunInpaintToVideo,
|
"WanFunInpaintToVideo": WanFunInpaintToVideo,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user