mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 08:16:44 +00:00
Merge branch 'v3-definition' into v3-definition-wip
This commit is contained in:
commit
320f4be792
@ -52,6 +52,6 @@ class EmptyAceStepLatentAudio(io.ComfyNode):
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
TextEncodeAceStepAudio,
|
||||
EmptyAceStepLatentAudio,
|
||||
TextEncodeAceStepAudio,
|
||||
]
|
||||
|
@ -122,7 +122,7 @@ class SamplerEulerCFGpp(io.ComfyNode):
|
||||
return io.NodeOutput(sampler)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
SamplerLCMUpscale,
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
SamplerEulerCFGpp,
|
||||
SamplerLCMUpscale,
|
||||
]
|
||||
|
@ -5,6 +5,18 @@ import torch
|
||||
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
def loglinear_interp(t_steps, num_steps):
|
||||
"""Performs log-linear interpolation of a given array of decreasing numbers."""
|
||||
xs = np.linspace(0, 1, len(t_steps))
|
||||
ys = np.log(t_steps[::-1])
|
||||
|
||||
new_xs = np.linspace(0, 1, num_steps)
|
||||
new_ys = np.interp(new_xs, xs, ys)
|
||||
|
||||
return np.exp(new_ys)[::-1].copy()
|
||||
|
||||
|
||||
NOISE_LEVELS = {
|
||||
"SD1": [
|
||||
14.6146412293,
|
||||
@ -36,17 +48,6 @@ NOISE_LEVELS = {
|
||||
}
|
||||
|
||||
|
||||
def loglinear_interp(t_steps, num_steps):
|
||||
"""Performs log-linear interpolation of a given array of decreasing numbers."""
|
||||
xs = np.linspace(0, 1, len(t_steps))
|
||||
ys = np.log(t_steps[::-1])
|
||||
|
||||
new_xs = np.linspace(0, 1, num_steps)
|
||||
new_ys = np.interp(new_xs, xs, ys)
|
||||
|
||||
return np.exp(new_ys)[::-1].copy()
|
||||
|
||||
|
||||
class AlignYourStepsScheduler(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
@ -78,6 +79,6 @@ class AlignYourStepsScheduler(io.ComfyNode):
|
||||
return io.NodeOutput(torch.FloatTensor(sigmas))
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
AlignYourStepsScheduler,
|
||||
]
|
||||
|
@ -93,6 +93,6 @@ class APG(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
APG,
|
||||
]
|
||||
|
@ -131,9 +131,9 @@ class UNetTemporalAttentionMultiply(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
UNetSelfAttentionMultiply,
|
||||
UNetCrossAttentionMultiply,
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPAttentionMultiply,
|
||||
UNetCrossAttentionMultiply,
|
||||
UNetSelfAttentionMultiply,
|
||||
UNetTemporalAttentionMultiply,
|
||||
]
|
||||
|
@ -3,6 +3,7 @@ from __future__ import annotations
|
||||
import hashlib
|
||||
import os
|
||||
|
||||
import av
|
||||
import torch
|
||||
import torchaudio
|
||||
|
||||
@ -12,6 +13,28 @@ import node_helpers
|
||||
from comfy_api.latest import io, ui
|
||||
|
||||
|
||||
class EmptyLatentAudio(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="EmptyLatentAudio_V3",
|
||||
category="latent/audio",
|
||||
inputs=[
|
||||
io.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1),
|
||||
io.Int.Input(
|
||||
"batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
|
||||
),
|
||||
],
|
||||
outputs=[io.Latent.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, seconds, batch_size) -> io.NodeOutput:
|
||||
length = round((seconds * 44100 / 2048) / 2) * 2
|
||||
latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
|
||||
return io.NodeOutput({"samples": latent, "type": "audio"})
|
||||
|
||||
|
||||
class ConditioningStableAudio(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -42,83 +65,71 @@ class ConditioningStableAudio(io.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
class EmptyLatentAudio(io.ComfyNode):
|
||||
class VAEEncodeAudio(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="EmptyLatentAudio_V3",
|
||||
node_id="VAEEncodeAudio_V3",
|
||||
category="latent/audio",
|
||||
inputs=[
|
||||
io.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1),
|
||||
io.Int.Input(
|
||||
id="batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
|
||||
),
|
||||
io.Audio.Input("audio"),
|
||||
io.Vae.Input("vae"),
|
||||
],
|
||||
outputs=[io.Latent.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, seconds, batch_size) -> io.NodeOutput:
|
||||
length = round((seconds * 44100 / 2048) / 2) * 2
|
||||
latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
|
||||
return io.NodeOutput({"samples": latent, "type": "audio"})
|
||||
def execute(cls, vae, audio) -> io.NodeOutput:
|
||||
sample_rate = audio["sample_rate"]
|
||||
if 44100 != sample_rate:
|
||||
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
|
||||
else:
|
||||
waveform = audio["waveform"]
|
||||
return io.NodeOutput({"samples": vae.encode(waveform.movedim(1, -1))})
|
||||
|
||||
|
||||
class LoadAudio(io.ComfyNode):
|
||||
class VAEDecodeAudio(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LoadAudio_V3", # frontend expects "LoadAudio" to work
|
||||
display_name="Load Audio _V3", # frontend ignores "display_name" for this node
|
||||
category="audio",
|
||||
node_id="VAEDecodeAudio_V3",
|
||||
category="latent/audio",
|
||||
inputs=[
|
||||
io.Combo.Input("audio", upload=io.UploadType.audio, options=cls.get_files_options()),
|
||||
io.Latent.Input("samples"),
|
||||
io.Vae.Input("vae"),
|
||||
],
|
||||
outputs=[io.Audio.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_files_options(cls) -> list[str]:
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
return sorted(folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]))
|
||||
|
||||
@classmethod
|
||||
def execute(cls, audio) -> io.NodeOutput:
|
||||
waveform, sample_rate = torchaudio.load(folder_paths.get_annotated_filepath(audio))
|
||||
return io.NodeOutput({"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate})
|
||||
|
||||
@classmethod
|
||||
def fingerprint_inputs(s, audio):
|
||||
image_path = folder_paths.get_annotated_filepath(audio)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, "rb") as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
@classmethod
|
||||
def validate_inputs(s, audio):
|
||||
if not folder_paths.exists_annotated_filepath(audio):
|
||||
return "Invalid audio file: {}".format(audio)
|
||||
return True
|
||||
def execute(cls, vae, samples) -> io.NodeOutput:
|
||||
audio = vae.decode(samples["samples"]).movedim(-1, 1)
|
||||
std = torch.std(audio, dim=[1, 2], keepdim=True) * 5.0
|
||||
std[std < 1.0] = 1.0
|
||||
audio /= std
|
||||
return io.NodeOutput({"waveform": audio, "sample_rate": 44100})
|
||||
|
||||
|
||||
class PreviewAudio(io.ComfyNode):
|
||||
class SaveAudio(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="PreviewAudio_V3", # frontend expects "PreviewAudio" to work
|
||||
display_name="Preview Audio _V3", # frontend ignores "display_name" for this node
|
||||
node_id="SaveAudio_V3", # frontend expects "SaveAudio" to work
|
||||
display_name="Save Audio _V3", # frontend ignores "display_name" for this node
|
||||
category="audio",
|
||||
inputs=[
|
||||
io.Audio.Input("audio"),
|
||||
io.String.Input("filename_prefix", default="audio/ComfyUI"),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, audio) -> io.NodeOutput:
|
||||
return io.NodeOutput(ui=ui.PreviewAudio(audio, cls=cls))
|
||||
def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> io.NodeOutput:
|
||||
return io.NodeOutput(
|
||||
ui=ui.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format)
|
||||
)
|
||||
|
||||
|
||||
class SaveAudioMP3(io.ComfyNode):
|
||||
@ -171,71 +182,99 @@ class SaveAudioOpus(io.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
class SaveAudio(io.ComfyNode):
|
||||
class PreviewAudio(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveAudio_V3", # frontend expects "SaveAudio" to work
|
||||
display_name="Save Audio _V3", # frontend ignores "display_name" for this node
|
||||
node_id="PreviewAudio_V3", # frontend expects "PreviewAudio" to work
|
||||
display_name="Preview Audio _V3", # frontend ignores "display_name" for this node
|
||||
category="audio",
|
||||
inputs=[
|
||||
io.Audio.Input("audio"),
|
||||
io.String.Input("filename_prefix", default="audio/ComfyUI"),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> io.NodeOutput:
|
||||
return io.NodeOutput(
|
||||
ui=ui.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format)
|
||||
)
|
||||
def execute(cls, audio) -> io.NodeOutput:
|
||||
return io.NodeOutput(ui=ui.PreviewAudio(audio, cls=cls))
|
||||
|
||||
|
||||
class VAEDecodeAudio(io.ComfyNode):
|
||||
class LoadAudio(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VAEDecodeAudio_V3",
|
||||
category="latent/audio",
|
||||
node_id="LoadAudio_V3", # frontend expects "LoadAudio" to work
|
||||
display_name="Load Audio _V3", # frontend ignores "display_name" for this node
|
||||
category="audio",
|
||||
inputs=[
|
||||
io.Latent.Input("samples"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Combo.Input("audio", upload=io.UploadType.audio, options=cls.get_files_options()),
|
||||
],
|
||||
outputs=[io.Audio.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, vae, samples) -> io.NodeOutput:
|
||||
audio = vae.decode(samples["samples"]).movedim(-1, 1)
|
||||
std = torch.std(audio, dim=[1, 2], keepdim=True) * 5.0
|
||||
std[std < 1.0] = 1.0
|
||||
audio /= std
|
||||
return io.NodeOutput({"waveform": audio, "sample_rate": 44100})
|
||||
|
||||
|
||||
class VAEEncodeAudio(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VAEEncodeAudio_V3",
|
||||
category="latent/audio",
|
||||
inputs=[
|
||||
io.Audio.Input("audio"),
|
||||
io.Vae.Input("vae"),
|
||||
],
|
||||
outputs=[io.Latent.Output()],
|
||||
)
|
||||
def get_files_options(cls) -> list[str]:
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
return sorted(folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]))
|
||||
|
||||
@classmethod
|
||||
def execute(cls, vae, audio) -> io.NodeOutput:
|
||||
sample_rate = audio["sample_rate"]
|
||||
if 44100 != sample_rate:
|
||||
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
|
||||
else:
|
||||
waveform = audio["waveform"]
|
||||
return io.NodeOutput({"samples": vae.encode(waveform.movedim(1, -1))})
|
||||
def load(cls, filepath: str) -> tuple[torch.Tensor, int]:
|
||||
with av.open(filepath) as af:
|
||||
if not af.streams.audio:
|
||||
raise ValueError("No audio stream found in the file.")
|
||||
|
||||
stream = af.streams.audio[0]
|
||||
sr = stream.codec_context.sample_rate
|
||||
n_channels = stream.channels
|
||||
|
||||
frames = []
|
||||
length = 0
|
||||
for frame in af.decode(streams=stream.index):
|
||||
buf = torch.from_numpy(frame.to_ndarray())
|
||||
if buf.shape[0] != n_channels:
|
||||
buf = buf.view(-1, n_channels).t()
|
||||
|
||||
frames.append(buf)
|
||||
length += buf.shape[1]
|
||||
|
||||
if not frames:
|
||||
raise ValueError("No audio frames decoded.")
|
||||
|
||||
wav = torch.cat(frames, dim=1)
|
||||
wav = cls.f32_pcm(wav)
|
||||
return wav, sr
|
||||
|
||||
@classmethod
|
||||
def f32_pcm(cls, wav: torch.Tensor) -> torch.Tensor:
|
||||
"""Convert audio to float 32 bits PCM format."""
|
||||
if wav.dtype.is_floating_point:
|
||||
return wav
|
||||
elif wav.dtype == torch.int16:
|
||||
return wav.float() / (2 ** 15)
|
||||
elif wav.dtype == torch.int32:
|
||||
return wav.float() / (2 ** 31)
|
||||
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
|
||||
|
||||
@classmethod
|
||||
def execute(cls, audio) -> io.NodeOutput:
|
||||
waveform, sample_rate = cls.load(folder_paths.get_annotated_filepath(audio))
|
||||
return io.NodeOutput({"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate})
|
||||
|
||||
@classmethod
|
||||
def fingerprint_inputs(s, audio):
|
||||
image_path = folder_paths.get_annotated_filepath(audio)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, "rb") as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
@classmethod
|
||||
def validate_inputs(s, audio):
|
||||
if not folder_paths.exists_annotated_filepath(audio):
|
||||
return "Invalid audio file: {}".format(audio)
|
||||
return True
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
@ -243,9 +282,9 @@ NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
EmptyLatentAudio,
|
||||
LoadAudio,
|
||||
PreviewAudio,
|
||||
SaveAudio,
|
||||
SaveAudioMP3,
|
||||
SaveAudioOpus,
|
||||
SaveAudio,
|
||||
VAEDecodeAudio,
|
||||
VAEEncodeAudio,
|
||||
]
|
||||
|
@ -212,6 +212,6 @@ class WanCameraEmbedding(io.ComfyNode):
|
||||
return io.NodeOutput(control_camera_video, width, height, length)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
WanCameraEmbedding,
|
||||
]
|
||||
|
@ -27,6 +27,6 @@ class Canny(io.ComfyNode):
|
||||
return io.NodeOutput(img_out)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
Canny,
|
||||
]
|
||||
|
@ -5,6 +5,7 @@ import torch
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
# https://github.com/WeichenFan/CFG-Zero-star
|
||||
def optimized_scale(positive, negative):
|
||||
positive_flat = positive.reshape(positive.shape[0], -1)
|
||||
negative_flat = negative.reshape(negative.shape[0], -1)
|
||||
@ -21,6 +22,36 @@ def optimized_scale(positive, negative):
|
||||
return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1))
|
||||
|
||||
|
||||
class CFGZeroStar(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="CFGZeroStar_V3",
|
||||
category="advanced/guidance",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
],
|
||||
outputs=[io.Model.Output(display_name="patched_model")],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model) -> io.NodeOutput:
|
||||
m = model.clone()
|
||||
|
||||
def cfg_zero_star(args):
|
||||
guidance_scale = args['cond_scale']
|
||||
x = args['input']
|
||||
cond_p = args['cond_denoised']
|
||||
uncond_p = args['uncond_denoised']
|
||||
out = args["denoised"]
|
||||
alpha = optimized_scale(x - cond_p, x - uncond_p)
|
||||
|
||||
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha)
|
||||
|
||||
m.set_model_sampler_post_cfg_function(cfg_zero_star)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class CFGNorm(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
@ -52,37 +83,7 @@ class CFGNorm(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class CFGZeroStar(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="CFGZeroStar_V3",
|
||||
category="advanced/guidance",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
],
|
||||
outputs=[io.Model.Output(display_name="patched_model")],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model) -> io.NodeOutput:
|
||||
m = model.clone()
|
||||
|
||||
def cfg_zero_star(args):
|
||||
guidance_scale = args['cond_scale']
|
||||
x = args['input']
|
||||
cond_p = args['cond_denoised']
|
||||
uncond_p = args['uncond_denoised']
|
||||
out = args["denoised"]
|
||||
alpha = optimized_scale(x - cond_p, x - uncond_p)
|
||||
|
||||
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha)
|
||||
|
||||
m.set_model_sampler_post_cfg_function(cfg_zero_star)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CFGNorm,
|
||||
CFGZeroStar,
|
||||
]
|
||||
|
@ -4,6 +4,31 @@ import nodes
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class CLIPTextEncodeSDXLRefiner(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeSDXLRefiner_V3",
|
||||
category="advanced/conditioning",
|
||||
inputs=[
|
||||
io.Float.Input("ascore", default=6.0, min=0.0, max=1000.0, step=0.01),
|
||||
io.Int.Input("width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Int.Input("height", default=1024, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.String.Input("text", multiline=True, dynamic_prompts=True),
|
||||
io.Clip.Input("clip"),
|
||||
],
|
||||
outputs=[io.Conditioning.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, ascore, width, height, text, clip) -> io.NodeOutput:
|
||||
tokens = clip.tokenize(text)
|
||||
conditioning = clip.encode_from_tokens_scheduled(
|
||||
tokens, add_dict={"aesthetic_score": ascore, "width": width, "height": height}
|
||||
)
|
||||
return io.NodeOutput(conditioning)
|
||||
|
||||
|
||||
class CLIPTextEncodeSDXL(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -48,32 +73,7 @@ class CLIPTextEncodeSDXL(io.ComfyNode):
|
||||
return io.NodeOutput(conditioning)
|
||||
|
||||
|
||||
class CLIPTextEncodeSDXLRefiner(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeSDXLRefiner_V3",
|
||||
category="advanced/conditioning",
|
||||
inputs=[
|
||||
io.Float.Input("ascore", default=6.0, min=0.0, max=1000.0, step=0.01),
|
||||
io.Int.Input("width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Int.Input("height", default=1024, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.String.Input("text", multiline=True, dynamic_prompts=True),
|
||||
io.Clip.Input("clip"),
|
||||
],
|
||||
outputs=[io.Conditioning.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, ascore, width, height, text, clip) -> io.NodeOutput:
|
||||
tokens = clip.tokenize(text)
|
||||
conditioning = clip.encode_from_tokens_scheduled(
|
||||
tokens, add_dict={"aesthetic_score": ascore, "width": width, "height": height}
|
||||
)
|
||||
return io.NodeOutput(conditioning)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPTextEncodeSDXL,
|
||||
CLIPTextEncodeSDXLRefiner,
|
||||
]
|
||||
|
@ -112,32 +112,6 @@ def porter_duff_composite(
|
||||
return out_image, out_alpha
|
||||
|
||||
|
||||
class JoinImageWithAlpha(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="JoinImageWithAlpha_V3",
|
||||
display_name="Join Image with Alpha _V3",
|
||||
category="mask/compositing",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Mask.Input("alpha"),
|
||||
],
|
||||
outputs=[io.Image.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image: torch.Tensor, alpha: torch.Tensor) -> io.NodeOutput:
|
||||
batch_size = min(len(image), len(alpha))
|
||||
out_images = []
|
||||
|
||||
alpha = 1.0 - resize_mask(alpha, image.shape[1:])
|
||||
for i in range(batch_size):
|
||||
out_images.append(torch.cat((image[i][:, :, :3], alpha[i].unsqueeze(2)), dim=2))
|
||||
|
||||
return io.NodeOutput(torch.stack(out_images))
|
||||
|
||||
|
||||
class PorterDuffImageComposite(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -219,7 +193,33 @@ class SplitImageWithAlpha(io.ComfyNode):
|
||||
return io.NodeOutput(torch.stack(out_images), 1.0 - torch.stack(out_alphas))
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
class JoinImageWithAlpha(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="JoinImageWithAlpha_V3",
|
||||
display_name="Join Image with Alpha _V3",
|
||||
category="mask/compositing",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Mask.Input("alpha"),
|
||||
],
|
||||
outputs=[io.Image.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image: torch.Tensor, alpha: torch.Tensor) -> io.NodeOutput:
|
||||
batch_size = min(len(image), len(alpha))
|
||||
out_images = []
|
||||
|
||||
alpha = 1.0 - resize_mask(alpha, image.shape[1:])
|
||||
for i in range(batch_size):
|
||||
out_images.append(torch.cat((image[i][:, :, :3], alpha[i].unsqueeze(2)), dim=2))
|
||||
|
||||
return io.NodeOutput(torch.stack(out_images))
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
JoinImageWithAlpha,
|
||||
PorterDuffImageComposite,
|
||||
SplitImageWithAlpha,
|
||||
|
@ -54,7 +54,7 @@ class T5TokenizerOptions(io.ComfyNode):
|
||||
return io.NodeOutput(clip)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPTextEncodeControlnet,
|
||||
T5TokenizerOptions,
|
||||
]
|
||||
|
@ -3,6 +3,33 @@ from comfy.cldm.control_types import UNION_CONTROLNET_TYPES
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class SetUnionControlNetType(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SetUnionControlNetType_V3",
|
||||
category="conditioning/controlnet",
|
||||
inputs=[
|
||||
io.ControlNet.Input("control_net"),
|
||||
io.Combo.Input("type", options=["auto"] + list(UNION_CONTROLNET_TYPES.keys())),
|
||||
],
|
||||
outputs=[
|
||||
io.ControlNet.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, control_net, type) -> io.NodeOutput:
|
||||
control_net = control_net.copy()
|
||||
type_number = UNION_CONTROLNET_TYPES.get(type, -1)
|
||||
if type_number >= 0:
|
||||
control_net.set_extra_arg("control_type", [type_number])
|
||||
else:
|
||||
control_net.set_extra_arg("control_type", [])
|
||||
|
||||
return io.NodeOutput(control_net)
|
||||
|
||||
|
||||
class ControlNetApplyAdvanced(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -60,33 +87,6 @@ class ControlNetApplyAdvanced(io.ComfyNode):
|
||||
return io.NodeOutput(out[0], out[1])
|
||||
|
||||
|
||||
class SetUnionControlNetType(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SetUnionControlNetType_V3",
|
||||
category="conditioning/controlnet",
|
||||
inputs=[
|
||||
io.ControlNet.Input("control_net"),
|
||||
io.Combo.Input("type", options=["auto"] + list(UNION_CONTROLNET_TYPES.keys())),
|
||||
],
|
||||
outputs=[
|
||||
io.ControlNet.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, control_net, type) -> io.NodeOutput:
|
||||
control_net = control_net.copy()
|
||||
type_number = UNION_CONTROLNET_TYPES.get(type, -1)
|
||||
if type_number >= 0:
|
||||
control_net.set_extra_arg("control_type", [type_number])
|
||||
else:
|
||||
control_net.set_extra_arg("control_type", [])
|
||||
|
||||
return io.NodeOutput(control_net)
|
||||
|
||||
|
||||
class ControlNetInpaintingAliMamaApply(ControlNetApplyAdvanced):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
|
@ -9,6 +9,29 @@ import nodes
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class EmptyCosmosLatentVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="EmptyCosmosLatentVideo_V3",
|
||||
category="latent/video",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=1280, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=704, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
],
|
||||
outputs=[io.Latent.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, width, height, length, batch_size) -> io.NodeOutput:
|
||||
latent = torch.zeros(
|
||||
[batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()
|
||||
)
|
||||
return io.NodeOutput({"samples": latent})
|
||||
|
||||
|
||||
def vae_encode_with_padding(vae, image, width, height, length, padding=0):
|
||||
pixels = comfy.utils.common_upscale(image[..., :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
pixel_len = min(pixels.shape[0], length)
|
||||
@ -116,30 +139,7 @@ class CosmosPredict2ImageToVideoLatent(io.ComfyNode):
|
||||
return io.NodeOutput(out_latent)
|
||||
|
||||
|
||||
class EmptyCosmosLatentVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="EmptyCosmosLatentVideo_V3",
|
||||
category="latent/video",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=1280, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=704, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
],
|
||||
outputs=[io.Latent.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, width, height, length, batch_size) -> io.NodeOutput:
|
||||
latent = torch.zeros(
|
||||
[batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()
|
||||
)
|
||||
return io.NodeOutput({"samples": latent})
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CosmosImageToVideoLatent,
|
||||
CosmosPredict2ImageToVideoLatent,
|
||||
EmptyCosmosLatentVideo,
|
||||
|
1035
comfy_extras/v3/nodes_custom_sampler.py
Normal file
1035
comfy_extras/v3/nodes_custom_sampler.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -45,6 +45,6 @@ class DifferentialDiffusion(io.ComfyNode):
|
||||
return (denoise_mask >= threshold).to(denoise_mask.dtype)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
DifferentialDiffusion,
|
||||
]
|
||||
|
@ -29,6 +29,6 @@ class ReferenceLatent(io.ComfyNode):
|
||||
return io.NodeOutput(conditioning)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
ReferenceLatent,
|
||||
]
|
||||
|
@ -49,28 +49,6 @@ class CLIPTextEncodeFlux(io.ComfyNode):
|
||||
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens, add_dict={"guidance": guidance}))
|
||||
|
||||
|
||||
class FluxDisableGuidance(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="FluxDisableGuidance_V3",
|
||||
category="advanced/conditioning/flux",
|
||||
description="This node completely disables the guidance embed on Flux and Flux like models",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, conditioning):
|
||||
c = node_helpers.conditioning_set_values(conditioning, {"guidance": None})
|
||||
return io.NodeOutput(c)
|
||||
|
||||
|
||||
class FluxGuidance(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -91,6 +69,25 @@ class FluxGuidance(io.ComfyNode):
|
||||
c = node_helpers.conditioning_set_values(conditioning, {"guidance": guidance})
|
||||
return io.NodeOutput(c)
|
||||
|
||||
class FluxDisableGuidance(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="FluxDisableGuidance_V3",
|
||||
category="advanced/conditioning/flux",
|
||||
description="This node completely disables the guidance embed on Flux and Flux like models",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, conditioning):
|
||||
c = node_helpers.conditioning_set_values(conditioning, {"guidance": None})
|
||||
return io.NodeOutput(c)
|
||||
|
||||
class FluxKontextImageScale(io.ComfyNode):
|
||||
@classmethod
|
||||
@ -117,7 +114,7 @@ class FluxKontextImageScale(io.ComfyNode):
|
||||
return io.NodeOutput(image)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPTextEncodeFlux,
|
||||
FluxDisableGuidance,
|
||||
FluxGuidance,
|
||||
|
@ -125,7 +125,7 @@ class FreeU_V2(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
FreeU,
|
||||
FreeU_V2,
|
||||
]
|
||||
|
@ -105,6 +105,6 @@ class FreSca(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
FreSca,
|
||||
]
|
||||
|
@ -371,6 +371,6 @@ class GITSScheduler(io.ComfyNode):
|
||||
return io.NodeOutput(torch.FloatTensor(sigmas))
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
GITSScheduler,
|
||||
]
|
||||
|
@ -6,33 +6,6 @@ import folder_paths
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class CLIPTextEncodeHiDream(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeHiDream_V3",
|
||||
category="advanced/conditioning",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("clip_l", multiline=True, dynamic_prompts=True),
|
||||
io.String.Input("clip_g", multiline=True, dynamic_prompts=True),
|
||||
io.String.Input("t5xxl", multiline=True, dynamic_prompts=True),
|
||||
io.String.Input("llama", multiline=True, dynamic_prompts=True),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip, clip_l, clip_g, t5xxl, llama):
|
||||
tokens = clip.tokenize(clip_g)
|
||||
tokens["l"] = clip.tokenize(clip_l)["l"]
|
||||
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]
|
||||
tokens["llama"] = clip.tokenize(llama)["llama"]
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
class QuadrupleCLIPLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -65,7 +38,34 @@ class QuadrupleCLIPLoader(io.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
class CLIPTextEncodeHiDream(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeHiDream_V3",
|
||||
category="advanced/conditioning",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("clip_l", multiline=True, dynamic_prompts=True),
|
||||
io.String.Input("clip_g", multiline=True, dynamic_prompts=True),
|
||||
io.String.Input("t5xxl", multiline=True, dynamic_prompts=True),
|
||||
io.String.Input("llama", multiline=True, dynamic_prompts=True),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip, clip_l, clip_g, t5xxl, llama):
|
||||
tokens = clip.tokenize(clip_g)
|
||||
tokens["l"] = clip.tokenize(clip_l)["l"]
|
||||
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]
|
||||
tokens["llama"] = clip.tokenize(llama)["llama"]
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPTextEncodeHiDream,
|
||||
QuadrupleCLIPLoader,
|
||||
]
|
||||
|
@ -7,16 +7,6 @@ import node_helpers
|
||||
import nodes
|
||||
from comfy_api.latest import io
|
||||
|
||||
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
|
||||
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
|
||||
"1. The main content and theme of the video."
|
||||
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
|
||||
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
|
||||
"4. background environment, light, style and atmosphere."
|
||||
"5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n"
|
||||
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
|
||||
class CLIPTextEncodeHunyuanDiT(io.ComfyNode):
|
||||
@classmethod
|
||||
@ -68,6 +58,51 @@ class EmptyHunyuanLatentVideo(io.ComfyNode):
|
||||
return io.NodeOutput({"samples":latent})
|
||||
|
||||
|
||||
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
|
||||
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
|
||||
"1. The main content and theme of the video."
|
||||
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
|
||||
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
|
||||
"4. background environment, light, style and atmosphere."
|
||||
"5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n"
|
||||
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
|
||||
|
||||
class TextEncodeHunyuanVideo_ImageToVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="TextEncodeHunyuanVideo_ImageToVideo_V3",
|
||||
category="advanced/conditioning",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.ClipVisionOutput.Input("clip_vision_output"),
|
||||
io.String.Input("prompt", multiline=True, dynamic_prompts=True),
|
||||
io.Int.Input(
|
||||
"image_interleave",
|
||||
default=2,
|
||||
min=1,
|
||||
max=512,
|
||||
tooltip="How much the image influences things vs the text prompt. Higher number means more influence from the text prompt.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip, clip_vision_output, prompt, image_interleave):
|
||||
tokens = clip.tokenize(
|
||||
prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V,
|
||||
image_embeds=clip_vision_output.mm_projected,
|
||||
image_interleave=image_interleave,
|
||||
)
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
class HunyuanImageToVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -126,40 +161,7 @@ class HunyuanImageToVideo(io.ComfyNode):
|
||||
return io.NodeOutput(positive, out_latent)
|
||||
|
||||
|
||||
class TextEncodeHunyuanVideo_ImageToVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="TextEncodeHunyuanVideo_ImageToVideo_V3",
|
||||
category="advanced/conditioning",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.ClipVisionOutput.Input("clip_vision_output"),
|
||||
io.String.Input("prompt", multiline=True, dynamic_prompts=True),
|
||||
io.Int.Input(
|
||||
"image_interleave",
|
||||
default=2,
|
||||
min=1,
|
||||
max=512,
|
||||
tooltip="How much the image influences things vs the text prompt. Higher number means more influence from the text prompt.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip, clip_vision_output, prompt, image_interleave):
|
||||
tokens = clip.tokenize(
|
||||
prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V,
|
||||
image_embeds=clip_vision_output.mm_projected,
|
||||
image_interleave=image_interleave,
|
||||
)
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPTextEncodeHunyuanDiT,
|
||||
EmptyHunyuanLatentVideo,
|
||||
HunyuanImageToVideo,
|
||||
|
672
comfy_extras/v3/nodes_hunyuan3d.py
Normal file
672
comfy_extras/v3/nodes_hunyuan3d.py
Normal file
@ -0,0 +1,672 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import comfy.model_management
|
||||
import folder_paths
|
||||
from comfy.cli_args import args
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import (
|
||||
get_1d_sincos_pos_embed_from_grid_torch,
|
||||
)
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class VOXEL:
|
||||
def __init__(self, data):
|
||||
self.data = data
|
||||
|
||||
|
||||
class MESH:
|
||||
def __init__(self, vertices, faces):
|
||||
self.vertices = vertices
|
||||
self.faces = faces
|
||||
|
||||
|
||||
def voxel_to_mesh(voxels, threshold=0.5, device=None):
|
||||
if device is None:
|
||||
device = torch.device("cpu")
|
||||
voxels = voxels.to(device)
|
||||
|
||||
binary = (voxels > threshold).float()
|
||||
padded = torch.nn.functional.pad(binary, (1, 1, 1, 1, 1, 1), 'constant', 0)
|
||||
|
||||
D, H, W = binary.shape
|
||||
|
||||
neighbors = torch.tensor([
|
||||
[0, 0, 1],
|
||||
[0, 0, -1],
|
||||
[0, 1, 0],
|
||||
[0, -1, 0],
|
||||
[1, 0, 0],
|
||||
[-1, 0, 0]
|
||||
], device=device)
|
||||
|
||||
z, y, x = torch.meshgrid(
|
||||
torch.arange(D, device=device),
|
||||
torch.arange(H, device=device),
|
||||
torch.arange(W, device=device),
|
||||
indexing='ij'
|
||||
)
|
||||
voxel_indices = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)
|
||||
|
||||
solid_mask = binary.flatten() > 0
|
||||
solid_indices = voxel_indices[solid_mask]
|
||||
|
||||
corner_offsets = [
|
||||
torch.tensor([
|
||||
[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1]
|
||||
], device=device),
|
||||
torch.tensor([
|
||||
[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]
|
||||
], device=device),
|
||||
torch.tensor([
|
||||
[0, 1, 0], [1, 1, 0], [1, 1, 1], [0, 1, 1]
|
||||
], device=device),
|
||||
torch.tensor([
|
||||
[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]
|
||||
], device=device),
|
||||
torch.tensor([
|
||||
[1, 0, 1], [1, 1, 1], [1, 1, 0], [1, 0, 0]
|
||||
], device=device),
|
||||
torch.tensor([
|
||||
[0, 1, 0], [0, 1, 1], [0, 0, 1], [0, 0, 0]
|
||||
], device=device)
|
||||
]
|
||||
|
||||
all_vertices = []
|
||||
all_indices = []
|
||||
|
||||
vertex_count = 0
|
||||
|
||||
for face_idx, offset in enumerate(neighbors):
|
||||
neighbor_indices = solid_indices + offset
|
||||
|
||||
padded_indices = neighbor_indices + 1
|
||||
|
||||
is_exposed = padded[
|
||||
padded_indices[:, 0],
|
||||
padded_indices[:, 1],
|
||||
padded_indices[:, 2]
|
||||
] == 0
|
||||
|
||||
if not is_exposed.any():
|
||||
continue
|
||||
|
||||
exposed_indices = solid_indices[is_exposed]
|
||||
|
||||
corners = corner_offsets[face_idx].unsqueeze(0)
|
||||
|
||||
face_vertices = exposed_indices.unsqueeze(1) + corners
|
||||
|
||||
all_vertices.append(face_vertices.reshape(-1, 3))
|
||||
|
||||
num_faces = exposed_indices.shape[0]
|
||||
face_indices = torch.arange(
|
||||
vertex_count,
|
||||
vertex_count + 4 * num_faces,
|
||||
device=device
|
||||
).reshape(-1, 4)
|
||||
|
||||
all_indices.append(torch.stack([face_indices[:, 0], face_indices[:, 1], face_indices[:, 2]], dim=1))
|
||||
all_indices.append(torch.stack([face_indices[:, 0], face_indices[:, 2], face_indices[:, 3]], dim=1))
|
||||
|
||||
vertex_count += 4 * num_faces
|
||||
|
||||
if len(all_vertices) > 0:
|
||||
vertices = torch.cat(all_vertices, dim=0)
|
||||
faces = torch.cat(all_indices, dim=0)
|
||||
else:
|
||||
vertices = torch.zeros((1, 3))
|
||||
faces = torch.zeros((1, 3))
|
||||
|
||||
v_min = 0
|
||||
v_max = max(voxels.shape)
|
||||
|
||||
vertices = vertices - (v_min + v_max) / 2
|
||||
|
||||
scale = (v_max - v_min) / 2
|
||||
if scale > 0:
|
||||
vertices = vertices / scale
|
||||
|
||||
vertices = torch.fliplr(vertices)
|
||||
return vertices, faces
|
||||
|
||||
def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
|
||||
if device is None:
|
||||
device = torch.device("cpu")
|
||||
voxels = voxels.to(device)
|
||||
|
||||
D, H, W = voxels.shape
|
||||
|
||||
padded = torch.nn.functional.pad(voxels, (1, 1, 1, 1, 1, 1), 'constant', 0)
|
||||
z, y, x = torch.meshgrid(
|
||||
torch.arange(D, device=device),
|
||||
torch.arange(H, device=device),
|
||||
torch.arange(W, device=device),
|
||||
indexing='ij'
|
||||
)
|
||||
cell_positions = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)
|
||||
|
||||
corner_offsets = torch.tensor([
|
||||
[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
|
||||
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]
|
||||
], device=device)
|
||||
|
||||
corner_values = torch.zeros((cell_positions.shape[0], 8), device=device)
|
||||
for c, (dz, dy, dx) in enumerate(corner_offsets):
|
||||
corner_values[:, c] = padded[
|
||||
cell_positions[:, 0] + dz,
|
||||
cell_positions[:, 1] + dy,
|
||||
cell_positions[:, 2] + dx
|
||||
]
|
||||
|
||||
corner_signs = corner_values > threshold
|
||||
has_inside = torch.any(corner_signs, dim=1)
|
||||
has_outside = torch.any(~corner_signs, dim=1)
|
||||
contains_surface = has_inside & has_outside
|
||||
|
||||
active_cells = cell_positions[contains_surface]
|
||||
active_signs = corner_signs[contains_surface]
|
||||
active_values = corner_values[contains_surface]
|
||||
|
||||
if active_cells.shape[0] == 0:
|
||||
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
edges = torch.tensor([
|
||||
[0, 1], [0, 2], [0, 4], [1, 3],
|
||||
[1, 5], [2, 3], [2, 6], [3, 7],
|
||||
[4, 5], [4, 6], [5, 7], [6, 7]
|
||||
], device=device)
|
||||
|
||||
cell_vertices = {}
|
||||
progress = comfy.utils.ProgressBar(100)
|
||||
|
||||
for edge_idx, (e1, e2) in enumerate(edges):
|
||||
progress.update(1)
|
||||
crossing = active_signs[:, e1] != active_signs[:, e2]
|
||||
if not crossing.any():
|
||||
continue
|
||||
|
||||
cell_indices = torch.nonzero(crossing, as_tuple=True)[0]
|
||||
|
||||
v1 = active_values[cell_indices, e1]
|
||||
v2 = active_values[cell_indices, e2]
|
||||
|
||||
t = torch.zeros_like(v1, device=device)
|
||||
denom = v2 - v1
|
||||
valid = denom != 0
|
||||
t[valid] = (threshold - v1[valid]) / denom[valid]
|
||||
t[~valid] = 0.5
|
||||
|
||||
p1 = corner_offsets[e1].float()
|
||||
p2 = corner_offsets[e2].float()
|
||||
|
||||
intersection = p1.unsqueeze(0) + t.unsqueeze(1) * (p2.unsqueeze(0) - p1.unsqueeze(0))
|
||||
|
||||
for i, point in zip(cell_indices.tolist(), intersection):
|
||||
if i not in cell_vertices:
|
||||
cell_vertices[i] = []
|
||||
cell_vertices[i].append(point)
|
||||
|
||||
# Calculate the final vertices as the average of intersection points for each cell
|
||||
vertices = []
|
||||
vertex_lookup = {}
|
||||
|
||||
vert_progress_mod = round(len(cell_vertices)/50)
|
||||
|
||||
for i, points in cell_vertices.items():
|
||||
if not i % vert_progress_mod:
|
||||
progress.update(1)
|
||||
|
||||
if points:
|
||||
vertex = torch.stack(points).mean(dim=0)
|
||||
vertex = vertex + active_cells[i].float()
|
||||
vertex_lookup[tuple(active_cells[i].tolist())] = len(vertices)
|
||||
vertices.append(vertex)
|
||||
|
||||
if not vertices:
|
||||
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
final_vertices = torch.stack(vertices)
|
||||
|
||||
inside_corners_mask = active_signs
|
||||
outside_corners_mask = ~active_signs
|
||||
|
||||
inside_counts = inside_corners_mask.sum(dim=1, keepdim=True).float()
|
||||
outside_counts = outside_corners_mask.sum(dim=1, keepdim=True).float()
|
||||
|
||||
inside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
|
||||
outside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
|
||||
|
||||
for i in range(8):
|
||||
mask_inside = inside_corners_mask[:, i].unsqueeze(1)
|
||||
mask_outside = outside_corners_mask[:, i].unsqueeze(1)
|
||||
inside_pos += corner_offsets[i].float().unsqueeze(0) * mask_inside
|
||||
outside_pos += corner_offsets[i].float().unsqueeze(0) * mask_outside
|
||||
|
||||
inside_pos /= inside_counts
|
||||
outside_pos /= outside_counts
|
||||
gradients = inside_pos - outside_pos
|
||||
|
||||
pos_dirs = torch.tensor([
|
||||
[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]
|
||||
], device=device)
|
||||
|
||||
cross_products = [
|
||||
torch.linalg.cross(pos_dirs[i].float(), pos_dirs[j].float())
|
||||
for i in range(3) for j in range(i+1, 3)
|
||||
]
|
||||
|
||||
faces = []
|
||||
all_keys = set(vertex_lookup.keys())
|
||||
|
||||
face_progress_mod = round(len(active_cells)/38*3)
|
||||
|
||||
for pair_idx, (i, j) in enumerate([(0,1), (0,2), (1,2)]):
|
||||
dir_i = pos_dirs[i]
|
||||
dir_j = pos_dirs[j]
|
||||
cross_product = cross_products[pair_idx]
|
||||
|
||||
ni_positions = active_cells + dir_i
|
||||
nj_positions = active_cells + dir_j
|
||||
diag_positions = active_cells + dir_i + dir_j
|
||||
|
||||
alignments = torch.matmul(gradients, cross_product)
|
||||
|
||||
valid_quads = []
|
||||
quad_indices = []
|
||||
|
||||
for idx, active_cell in enumerate(active_cells):
|
||||
if not idx % face_progress_mod:
|
||||
progress.update(1)
|
||||
cell_key = tuple(active_cell.tolist())
|
||||
ni_key = tuple(ni_positions[idx].tolist())
|
||||
nj_key = tuple(nj_positions[idx].tolist())
|
||||
diag_key = tuple(diag_positions[idx].tolist())
|
||||
|
||||
if cell_key in all_keys and ni_key in all_keys and nj_key in all_keys and diag_key in all_keys:
|
||||
v0 = vertex_lookup[cell_key]
|
||||
v1 = vertex_lookup[ni_key]
|
||||
v2 = vertex_lookup[nj_key]
|
||||
v3 = vertex_lookup[diag_key]
|
||||
|
||||
valid_quads.append((v0, v1, v2, v3))
|
||||
quad_indices.append(idx)
|
||||
|
||||
for q_idx, (v0, v1, v2, v3) in enumerate(valid_quads):
|
||||
cell_idx = quad_indices[q_idx]
|
||||
if alignments[cell_idx] > 0:
|
||||
faces.append(torch.tensor([v0, v1, v3], device=device, dtype=torch.long))
|
||||
faces.append(torch.tensor([v0, v3, v2], device=device, dtype=torch.long))
|
||||
else:
|
||||
faces.append(torch.tensor([v0, v3, v1], device=device, dtype=torch.long))
|
||||
faces.append(torch.tensor([v0, v2, v3], device=device, dtype=torch.long))
|
||||
|
||||
if faces:
|
||||
faces = torch.stack(faces)
|
||||
else:
|
||||
faces = torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
v_min = 0
|
||||
v_max = max(D, H, W)
|
||||
|
||||
final_vertices = final_vertices - (v_min + v_max) / 2
|
||||
|
||||
scale = (v_max - v_min) / 2
|
||||
if scale > 0:
|
||||
final_vertices = final_vertices / scale
|
||||
|
||||
final_vertices = torch.fliplr(final_vertices)
|
||||
|
||||
return final_vertices, faces
|
||||
|
||||
|
||||
def save_glb(vertices, faces, filepath, metadata=None):
|
||||
"""
|
||||
Save PyTorch tensor vertices and faces as a GLB file without external dependencies.
|
||||
|
||||
Parameters:
|
||||
vertices: torch.Tensor of shape (N, 3) - The vertex coordinates
|
||||
faces: torch.Tensor of shape (M, 3) - The face indices (triangle faces)
|
||||
filepath: str - Output filepath (should end with .glb)
|
||||
"""
|
||||
|
||||
# Convert tensors to numpy arrays
|
||||
vertices_np = vertices.cpu().numpy().astype(np.float32)
|
||||
faces_np = faces.cpu().numpy().astype(np.uint32)
|
||||
|
||||
vertices_buffer = vertices_np.tobytes()
|
||||
indices_buffer = faces_np.tobytes()
|
||||
|
||||
def pad_to_4_bytes(buffer):
|
||||
padding_length = (4 - (len(buffer) % 4)) % 4
|
||||
return buffer + b'\x00' * padding_length
|
||||
|
||||
vertices_buffer_padded = pad_to_4_bytes(vertices_buffer)
|
||||
indices_buffer_padded = pad_to_4_bytes(indices_buffer)
|
||||
|
||||
buffer_data = vertices_buffer_padded + indices_buffer_padded
|
||||
|
||||
vertices_byte_length = len(vertices_buffer)
|
||||
vertices_byte_offset = 0
|
||||
indices_byte_length = len(indices_buffer)
|
||||
indices_byte_offset = len(vertices_buffer_padded)
|
||||
|
||||
gltf = {
|
||||
"asset": {"version": "2.0", "generator": "ComfyUI"},
|
||||
"buffers": [
|
||||
{
|
||||
"byteLength": len(buffer_data)
|
||||
}
|
||||
],
|
||||
"bufferViews": [
|
||||
{
|
||||
"buffer": 0,
|
||||
"byteOffset": vertices_byte_offset,
|
||||
"byteLength": vertices_byte_length,
|
||||
"target": 34962 # ARRAY_BUFFER
|
||||
},
|
||||
{
|
||||
"buffer": 0,
|
||||
"byteOffset": indices_byte_offset,
|
||||
"byteLength": indices_byte_length,
|
||||
"target": 34963 # ELEMENT_ARRAY_BUFFER
|
||||
}
|
||||
],
|
||||
"accessors": [
|
||||
{
|
||||
"bufferView": 0,
|
||||
"byteOffset": 0,
|
||||
"componentType": 5126, # FLOAT
|
||||
"count": len(vertices_np),
|
||||
"type": "VEC3",
|
||||
"max": vertices_np.max(axis=0).tolist(),
|
||||
"min": vertices_np.min(axis=0).tolist()
|
||||
},
|
||||
{
|
||||
"bufferView": 1,
|
||||
"byteOffset": 0,
|
||||
"componentType": 5125, # UNSIGNED_INT
|
||||
"count": faces_np.size,
|
||||
"type": "SCALAR"
|
||||
}
|
||||
],
|
||||
"meshes": [
|
||||
{
|
||||
"primitives": [
|
||||
{
|
||||
"attributes": {
|
||||
"POSITION": 0
|
||||
},
|
||||
"indices": 1,
|
||||
"mode": 4 # TRIANGLES
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"mesh": 0
|
||||
}
|
||||
],
|
||||
"scenes": [
|
||||
{
|
||||
"nodes": [0]
|
||||
}
|
||||
],
|
||||
"scene": 0
|
||||
}
|
||||
|
||||
if metadata is not None:
|
||||
gltf["asset"]["extras"] = metadata
|
||||
|
||||
# Convert the JSON to bytes
|
||||
gltf_json = json.dumps(gltf).encode('utf8')
|
||||
|
||||
def pad_json_to_4_bytes(buffer):
|
||||
padding_length = (4 - (len(buffer) % 4)) % 4
|
||||
return buffer + b' ' * padding_length
|
||||
|
||||
gltf_json_padded = pad_json_to_4_bytes(gltf_json)
|
||||
|
||||
# Create the GLB header
|
||||
# Magic glTF
|
||||
glb_header = struct.pack('<4sII', b'glTF', 2, 12 + 8 + len(gltf_json_padded) + 8 + len(buffer_data))
|
||||
|
||||
# Create JSON chunk header (chunk type 0)
|
||||
json_chunk_header = struct.pack('<II', len(gltf_json_padded), 0x4E4F534A) # "JSON" in little endian
|
||||
|
||||
# Create BIN chunk header (chunk type 1)
|
||||
bin_chunk_header = struct.pack('<II', len(buffer_data), 0x004E4942) # "BIN\0" in little endian
|
||||
|
||||
# Write the GLB file
|
||||
with open(filepath, 'wb') as f:
|
||||
f.write(glb_header)
|
||||
f.write(json_chunk_header)
|
||||
f.write(gltf_json_padded)
|
||||
f.write(bin_chunk_header)
|
||||
f.write(buffer_data)
|
||||
|
||||
return filepath
|
||||
|
||||
|
||||
class EmptyLatentHunyuan3Dv2(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="EmptyLatentHunyuan3Dv2_V3",
|
||||
category="latent/3d",
|
||||
inputs=[
|
||||
io.Int.Input("resolution", default=3072, min=1, max=8192),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch.")
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, resolution, batch_size):
|
||||
latent = torch.zeros([batch_size, 64, resolution], device=comfy.model_management.intermediate_device())
|
||||
return io.NodeOutput({"samples": latent, "type": "hunyuan3dv2"})
|
||||
|
||||
|
||||
class Hunyuan3Dv2Conditioning(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Hunyuan3Dv2Conditioning_V3",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
io.ClipVisionOutput.Input("clip_vision_output")
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip_vision_output):
|
||||
embeds = clip_vision_output.last_hidden_state
|
||||
positive = [[embeds, {}]]
|
||||
negative = [[torch.zeros_like(embeds), {}]]
|
||||
return io.NodeOutput(positive, negative)
|
||||
|
||||
|
||||
class Hunyuan3Dv2ConditioningMultiView(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Hunyuan3Dv2ConditioningMultiView_V3",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
io.ClipVisionOutput.Input("front", optional=True),
|
||||
io.ClipVisionOutput.Input("left", optional=True),
|
||||
io.ClipVisionOutput.Input("back", optional=True),
|
||||
io.ClipVisionOutput.Input("right", optional=True)
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, front=None, left=None, back=None, right=None):
|
||||
all_embeds = [front, left, back, right]
|
||||
out = []
|
||||
pos_embeds = None
|
||||
for i, e in enumerate(all_embeds):
|
||||
if e is not None:
|
||||
if pos_embeds is None:
|
||||
pos_embeds = get_1d_sincos_pos_embed_from_grid_torch(e.last_hidden_state.shape[-1], torch.arange(4))
|
||||
out.append(e.last_hidden_state + pos_embeds[i].reshape(1, 1, -1))
|
||||
|
||||
embeds = torch.cat(out, dim=1)
|
||||
positive = [[embeds, {}]]
|
||||
negative = [[torch.zeros_like(embeds), {}]]
|
||||
return io.NodeOutput(positive, negative)
|
||||
|
||||
|
||||
class SaveGLB(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveGLB_V3",
|
||||
category="3d",
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.Mesh.Input("mesh"),
|
||||
io.String.Input("filename_prefix", default="mesh/ComfyUI")
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, mesh, filename_prefix):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
|
||||
results = []
|
||||
|
||||
metadata = {}
|
||||
if not args.disable_metadata:
|
||||
if cls.hidden.prompt is not None:
|
||||
metadata["prompt"] = json.dumps(cls.hidden.prompt)
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
for i in range(mesh.vertices.shape[0]):
|
||||
f = f"{filename}_{counter:05}_.glb"
|
||||
save_glb(mesh.vertices[i], mesh.faces[i], os.path.join(full_output_folder, f), metadata)
|
||||
results.append({
|
||||
"filename": f,
|
||||
"subfolder": subfolder,
|
||||
"type": "output"
|
||||
})
|
||||
counter += 1
|
||||
|
||||
return io.NodeOutput(ui={"ui": {"3d": results}}) # TODO: do we need an additional type of preview for this?
|
||||
|
||||
|
||||
class VAEDecodeHunyuan3D(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VAEDecodeHunyuan3D_V3",
|
||||
category="latent/3d",
|
||||
inputs=[
|
||||
io.Latent.Input("samples"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("num_chunks", default=8000, min=1000, max=500000),
|
||||
io.Int.Input("octree_resolution", default=256, min=16, max=512)
|
||||
],
|
||||
outputs=[
|
||||
io.Voxel.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, vae, samples, num_chunks, octree_resolution):
|
||||
voxels = VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution}))
|
||||
return io.NodeOutput(voxels)
|
||||
|
||||
|
||||
class VoxelToMesh(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VoxelToMesh_V3",
|
||||
category="3d",
|
||||
inputs=[
|
||||
io.Voxel.Input("voxel"),
|
||||
io.Combo.Input("algorithm", options=["surface net", "basic"]),
|
||||
io.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01)
|
||||
],
|
||||
outputs=[
|
||||
io.Mesh.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, voxel, algorithm, threshold):
|
||||
vertices = []
|
||||
faces = []
|
||||
|
||||
if algorithm == "basic":
|
||||
mesh_function = voxel_to_mesh
|
||||
elif algorithm == "surface net":
|
||||
mesh_function = voxel_to_mesh_surfnet
|
||||
|
||||
for x in voxel.data:
|
||||
v, f = mesh_function(x, threshold=threshold, device=None)
|
||||
vertices.append(v)
|
||||
faces.append(f)
|
||||
|
||||
return io.NodeOutput(MESH(torch.stack(vertices), torch.stack(faces)))
|
||||
|
||||
|
||||
class VoxelToMeshBasic(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VoxelToMeshBasic_V3",
|
||||
category="3d",
|
||||
inputs=[
|
||||
io.Voxel.Input("voxel"),
|
||||
io.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01)
|
||||
],
|
||||
outputs=[
|
||||
io.Mesh.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, voxel, threshold):
|
||||
vertices = []
|
||||
faces = []
|
||||
for x in voxel.data:
|
||||
v, f = voxel_to_mesh(x, threshold=threshold, device=None)
|
||||
vertices.append(v)
|
||||
faces.append(f)
|
||||
|
||||
return io.NodeOutput(MESH(torch.stack(vertices), torch.stack(faces)))
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
EmptyLatentHunyuan3Dv2,
|
||||
Hunyuan3Dv2Conditioning,
|
||||
Hunyuan3Dv2ConditioningMultiView,
|
||||
SaveGLB,
|
||||
VAEDecodeHunyuan3D,
|
||||
VoxelToMesh,
|
||||
VoxelToMeshBasic,
|
||||
]
|
@ -131,6 +131,6 @@ class HypernetworkLoader(io.ComfyNode):
|
||||
return io.NodeOutput(model_hypernetwork)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
HypernetworkLoader,
|
||||
]
|
||||
|
@ -90,6 +90,6 @@ class HyperTile(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
HyperTile,
|
||||
]
|
||||
|
@ -51,6 +51,6 @@ class InstructPixToPixConditioning(io.ComfyNode):
|
||||
return io.NodeOutput(out[0], out[1], out_latent)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
InstructPixToPixConditioning,
|
||||
]
|
||||
|
@ -44,16 +44,15 @@ class LatentAdd(io.ComfyNode):
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
|
||||
class LatentApplyOperation(io.ComfyNode):
|
||||
class LatentSubtract(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentApplyOperation_V3",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
node_id="LatentSubtract_V3",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples"),
|
||||
io.LatentOperation.Input("operation"),
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
@ -61,44 +60,78 @@ class LatentApplyOperation(io.ComfyNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, samples, operation):
|
||||
samples_out = samples.copy()
|
||||
def execute(cls, samples1, samples2):
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples["samples"]
|
||||
samples_out["samples"] = operation(latent=s1)
|
||||
s1 = samples1["samples"]
|
||||
s2 = samples2["samples"]
|
||||
|
||||
s2 = reshape_latent_to(s1.shape, s2)
|
||||
samples_out["samples"] = s1 - s2
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
|
||||
class LatentApplyOperationCFG(io.ComfyNode):
|
||||
class LatentMultiply(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentApplyOperationCFG_V3",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
node_id="LatentMultiply_V3",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.LatentOperation.Input("operation"),
|
||||
io.Latent.Input("samples"),
|
||||
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, operation):
|
||||
m = model.clone()
|
||||
def execute(cls, samples, multiplier):
|
||||
samples_out = samples.copy()
|
||||
|
||||
def pre_cfg_function(args):
|
||||
conds_out = args["conds_out"]
|
||||
if len(conds_out) == 2:
|
||||
conds_out[0] = operation(latent=(conds_out[0] - conds_out[1])) + conds_out[1]
|
||||
else:
|
||||
conds_out[0] = operation(latent=conds_out[0])
|
||||
return conds_out
|
||||
s1 = samples["samples"]
|
||||
samples_out["samples"] = s1 * multiplier
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
class LatentInterpolate(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentInterpolate_V3",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, samples1, samples2, ratio):
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
s2 = samples2["samples"]
|
||||
|
||||
s2 = reshape_latent_to(s1.shape, s2)
|
||||
|
||||
m1 = torch.linalg.vector_norm(s1, dim=(1))
|
||||
m2 = torch.linalg.vector_norm(s2, dim=(1))
|
||||
|
||||
s1 = torch.nan_to_num(s1 / m1)
|
||||
s2 = torch.nan_to_num(s2 / m2)
|
||||
|
||||
t = (s1 * ratio + s2 * (1.0 - ratio))
|
||||
mt = torch.linalg.vector_norm(t, dim=(1))
|
||||
st = torch.nan_to_num(t / mt)
|
||||
|
||||
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
|
||||
class LatentBatch(io.ComfyNode):
|
||||
@ -159,54 +192,16 @@ class LatentBatchSeedBehavior(io.ComfyNode):
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
|
||||
class LatentInterpolate(io.ComfyNode):
|
||||
class LatentApplyOperation(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentInterpolate_V3",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, samples1, samples2, ratio):
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
s2 = samples2["samples"]
|
||||
|
||||
s2 = reshape_latent_to(s1.shape, s2)
|
||||
|
||||
m1 = torch.linalg.vector_norm(s1, dim=(1))
|
||||
m2 = torch.linalg.vector_norm(s2, dim=(1))
|
||||
|
||||
s1 = torch.nan_to_num(s1 / m1)
|
||||
s2 = torch.nan_to_num(s2 / m2)
|
||||
|
||||
t = (s1 * ratio + s2 * (1.0 - ratio))
|
||||
mt = torch.linalg.vector_norm(t, dim=(1))
|
||||
st = torch.nan_to_num(t / mt)
|
||||
|
||||
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
|
||||
class LatentMultiply(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentMultiply_V3",
|
||||
category="latent/advanced",
|
||||
node_id="LatentApplyOperation_V3",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Latent.Input("samples"),
|
||||
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01),
|
||||
io.LatentOperation.Input("operation"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
@ -214,14 +209,81 @@ class LatentMultiply(io.ComfyNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, samples, multiplier):
|
||||
def execute(cls, samples, operation):
|
||||
samples_out = samples.copy()
|
||||
|
||||
s1 = samples["samples"]
|
||||
samples_out["samples"] = s1 * multiplier
|
||||
samples_out["samples"] = operation(latent=s1)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
|
||||
class LatentApplyOperationCFG(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentApplyOperationCFG_V3",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.LatentOperation.Input("operation"),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, operation):
|
||||
m = model.clone()
|
||||
|
||||
def pre_cfg_function(args):
|
||||
conds_out = args["conds_out"]
|
||||
if len(conds_out) == 2:
|
||||
conds_out[0] = operation(latent=(conds_out[0] - conds_out[1])) + conds_out[1]
|
||||
else:
|
||||
conds_out[0] = operation(latent=conds_out[0])
|
||||
return conds_out
|
||||
|
||||
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class LatentOperationTonemapReinhard(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentOperationTonemapReinhard_V3",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Float.Input("multiplier", default=1.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.LatentOperation.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, multiplier):
|
||||
def tonemap_reinhard(latent, **kwargs):
|
||||
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
|
||||
normalized_latent = latent / latent_vector_magnitude
|
||||
|
||||
mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
|
||||
std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
|
||||
|
||||
top = (std * 5 + mean) * multiplier
|
||||
|
||||
#reinhard
|
||||
latent_vector_magnitude *= (1.0 / top)
|
||||
new_magnitude = latent_vector_magnitude / (latent_vector_magnitude + 1.0)
|
||||
new_magnitude *= top
|
||||
|
||||
return normalized_latent * new_magnitude
|
||||
return io.NodeOutput(tonemap_reinhard)
|
||||
|
||||
|
||||
class LatentOperationSharpen(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -264,69 +326,7 @@ class LatentOperationSharpen(io.ComfyNode):
|
||||
return io.NodeOutput(sharpen)
|
||||
|
||||
|
||||
class LatentOperationTonemapReinhard(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentOperationTonemapReinhard_V3",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Float.Input("multiplier", default=1.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.LatentOperation.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, multiplier):
|
||||
def tonemap_reinhard(latent, **kwargs):
|
||||
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
|
||||
normalized_latent = latent / latent_vector_magnitude
|
||||
|
||||
mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
|
||||
std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
|
||||
|
||||
top = (std * 5 + mean) * multiplier
|
||||
|
||||
#reinhard
|
||||
latent_vector_magnitude *= (1.0 / top)
|
||||
new_magnitude = latent_vector_magnitude / (latent_vector_magnitude + 1.0)
|
||||
new_magnitude *= top
|
||||
|
||||
return normalized_latent * new_magnitude
|
||||
return io.NodeOutput(tonemap_reinhard)
|
||||
|
||||
|
||||
class LatentSubtract(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentSubtract_V3",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, samples1, samples2):
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
s2 = samples2["samples"]
|
||||
|
||||
s2 = reshape_latent_to(s1.shape, s2)
|
||||
samples_out["samples"] = s1 - s2
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
LatentAdd,
|
||||
LatentApplyOperation,
|
||||
LatentApplyOperationCFG,
|
||||
|
@ -172,7 +172,7 @@ class Preview3DAnimation(io.ComfyNode):
|
||||
return io.NodeOutput(ui=ui.PreviewUI3D(model_file, camera_info, cls=cls))
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
Load3D,
|
||||
Load3DAnimation,
|
||||
Preview3D,
|
||||
|
@ -133,6 +133,6 @@ class LoraSave(io.ComfyNode):
|
||||
return io.NodeOutput()
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
LoraSave,
|
||||
]
|
||||
|
@ -29,6 +29,6 @@ class LotusConditioning(io.ComfyNode):
|
||||
return io.NodeOutput(cond)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
LotusConditioning,
|
||||
]
|
||||
|
@ -127,12 +127,12 @@ class LTXVAddGuide(io.ComfyNode):
|
||||
io.Vae.Input("vae"),
|
||||
io.Latent.Input("latent"),
|
||||
io.Image.Input(
|
||||
id="image",
|
||||
"image",
|
||||
tooltip="Image or video to condition the latent video on. Must be 8*n + 1 frames. "
|
||||
"If the video is not 8*n + 1 frames, it will be cropped to the nearest 8*n + 1 frames.",
|
||||
),
|
||||
io.Int.Input(
|
||||
id="frame_idx",
|
||||
"frame_idx",
|
||||
default=0,
|
||||
min=-9999,
|
||||
max=9999,
|
||||
@ -516,7 +516,7 @@ class ModelSamplingLTXV(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
EmptyLTXVLatentVideo,
|
||||
LTXVAddGuide,
|
||||
LTXVConditioning,
|
||||
|
@ -5,50 +5,6 @@ import torch
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class CLIPTextEncodeLumina2(io.ComfyNode):
|
||||
SYSTEM_PROMPT = {
|
||||
"superior": "You are an assistant designed to generate superior images with the superior "
|
||||
"degree of image-text alignment based on textual prompts or user prompts.",
|
||||
"alignment": "You are an assistant designed to generate high-quality images with the "
|
||||
"highest degree of image-text alignment based on textual prompts."
|
||||
}
|
||||
SYSTEM_PROMPT_TIP = "Lumina2 provide two types of system prompts:" \
|
||||
"Superior: You are an assistant designed to generate superior images with the superior "\
|
||||
"degree of image-text alignment based on textual prompts or user prompts. "\
|
||||
"Alignment: You are an assistant designed to generate high-quality images with the highest "\
|
||||
"degree of image-text alignment based on textual prompts."
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeLumina2_V3",
|
||||
display_name="CLIP Text Encode for Lumina2 _V3",
|
||||
category="conditioning",
|
||||
description="Encodes a system prompt and a user prompt using a CLIP model into an embedding "
|
||||
"that can be used to guide the diffusion model towards generating specific images.",
|
||||
inputs=[
|
||||
io.Combo.Input("system_prompt", options=list(cls.SYSTEM_PROMPT.keys()), tooltip=cls.SYSTEM_PROMPT_TIP),
|
||||
io.String.Input("user_prompt", multiline=True, dynamic_prompts=True, tooltip="The text to be encoded."),
|
||||
io.Clip.Input("clip", tooltip="The CLIP model used for encoding the text."),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(tooltip="A conditioning containing the embedded text used to guide the diffusion model."),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, system_prompt, user_prompt, clip):
|
||||
if clip is None:
|
||||
raise RuntimeError(
|
||||
"ERROR: clip input is invalid: None\n\n"
|
||||
"If the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model."
|
||||
)
|
||||
system_prompt = cls.SYSTEM_PROMPT[system_prompt]
|
||||
prompt = f'{system_prompt} <Prompt Start> {user_prompt}'
|
||||
tokens = clip.tokenize(prompt)
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
class RenormCFG(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -110,7 +66,51 @@ class RenormCFG(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
class CLIPTextEncodeLumina2(io.ComfyNode):
|
||||
SYSTEM_PROMPT = {
|
||||
"superior": "You are an assistant designed to generate superior images with the superior "
|
||||
"degree of image-text alignment based on textual prompts or user prompts.",
|
||||
"alignment": "You are an assistant designed to generate high-quality images with the "
|
||||
"highest degree of image-text alignment based on textual prompts."
|
||||
}
|
||||
SYSTEM_PROMPT_TIP = "Lumina2 provide two types of system prompts:" \
|
||||
"Superior: You are an assistant designed to generate superior images with the superior " \
|
||||
"degree of image-text alignment based on textual prompts or user prompts. " \
|
||||
"Alignment: You are an assistant designed to generate high-quality images with the highest " \
|
||||
"degree of image-text alignment based on textual prompts."
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeLumina2_V3",
|
||||
display_name="CLIP Text Encode for Lumina2 _V3",
|
||||
category="conditioning",
|
||||
description="Encodes a system prompt and a user prompt using a CLIP model into an embedding "
|
||||
"that can be used to guide the diffusion model towards generating specific images.",
|
||||
inputs=[
|
||||
io.Combo.Input("system_prompt", options=list(cls.SYSTEM_PROMPT.keys()), tooltip=cls.SYSTEM_PROMPT_TIP),
|
||||
io.String.Input("user_prompt", multiline=True, dynamic_prompts=True, tooltip="The text to be encoded."),
|
||||
io.Clip.Input("clip", tooltip="The CLIP model used for encoding the text."),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(tooltip="A conditioning containing the embedded text used to guide the diffusion model."),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, system_prompt, user_prompt, clip):
|
||||
if clip is None:
|
||||
raise RuntimeError(
|
||||
"ERROR: clip input is invalid: None\n\n"
|
||||
"If the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model."
|
||||
)
|
||||
system_prompt = cls.SYSTEM_PROMPT[system_prompt]
|
||||
prompt = f'{system_prompt} <Prompt Start> {user_prompt}'
|
||||
tokens = clip.tokenize(prompt)
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPTextEncodeLumina2,
|
||||
RenormCFG,
|
||||
]
|
||||
|
51
comfy_extras/v3/nodes_mahiro.py
Normal file
51
comfy_extras/v3/nodes_mahiro.py
Normal file
@ -0,0 +1,51 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class Mahiro(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Mahiro_V3",
|
||||
display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。) _V3",
|
||||
category="_for_testing",
|
||||
description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Model.Input("model")
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(display_name="patched_model")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model):
|
||||
m = model.clone()
|
||||
def mahiro_normd(args):
|
||||
scale: float = args['cond_scale']
|
||||
cond_p: torch.Tensor = args['cond_denoised']
|
||||
uncond_p: torch.Tensor = args['uncond_denoised']
|
||||
#naive leap
|
||||
leap = cond_p * scale
|
||||
#sim with uncond leap
|
||||
u_leap = uncond_p * scale
|
||||
cfg = args["denoised"]
|
||||
merge = (leap + cfg) / 2
|
||||
normu = torch.sqrt(u_leap.abs()) * u_leap.sign()
|
||||
normm = torch.sqrt(merge.abs()) * merge.sign()
|
||||
sim = F.cosine_similarity(normu, normm).mean()
|
||||
simsc = 2 * (sim+1)
|
||||
wm = (simsc*cfg + (4-simsc)*leap) / 4
|
||||
return wm
|
||||
m.set_model_sampler_post_cfg_function(mahiro_normd)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
Mahiro,
|
||||
]
|
@ -57,6 +57,161 @@ def composite(destination, source, x, y, mask=None, multiplier=8, resize_source=
|
||||
return destination
|
||||
|
||||
|
||||
class LatentCompositeMasked(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentCompositeMasked_V3",
|
||||
display_name="Latent Composite Masked _V3",
|
||||
category="latent",
|
||||
inputs=[
|
||||
io.Latent.Input("destination"),
|
||||
io.Latent.Input("source"),
|
||||
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Boolean.Input("resize_source", default=False),
|
||||
io.Mask.Input("mask", optional=True),
|
||||
],
|
||||
outputs=[io.Latent.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, resize_source, mask=None) -> io.NodeOutput:
|
||||
output = destination.copy()
|
||||
destination_samples = destination["samples"].clone()
|
||||
source_samples = source["samples"]
|
||||
output["samples"] = composite(destination_samples, source_samples, x, y, mask, 8, resize_source)
|
||||
return io.NodeOutput(output)
|
||||
|
||||
|
||||
class ImageCompositeMasked(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageCompositeMasked_V3",
|
||||
display_name="Image Composite Masked _V3",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Image.Input("destination"),
|
||||
io.Image.Input("source"),
|
||||
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Boolean.Input("resize_source", default=False),
|
||||
io.Mask.Input("mask", optional=True),
|
||||
],
|
||||
outputs=[io.Image.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, resize_source, mask=None) -> io.NodeOutput:
|
||||
destination, source = node_helpers.image_alpha_fix(destination, source)
|
||||
destination = destination.clone().movedim(-1, 1)
|
||||
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
||||
return io.NodeOutput(output)
|
||||
|
||||
|
||||
class MaskToImage(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="MaskToImage_V3",
|
||||
display_name="Convert Mask to Image _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Mask.Input("mask"),
|
||||
],
|
||||
outputs=[io.Image.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, mask) -> io.NodeOutput:
|
||||
return io.NodeOutput(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3))
|
||||
|
||||
|
||||
class ImageToMask(io.ComfyNode):
|
||||
CHANNELS = ["red", "green", "blue", "alpha"]
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageToMask_V3",
|
||||
display_name="Convert Image to Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Combo.Input("channel", options=cls.CHANNELS),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, channel) -> io.NodeOutput:
|
||||
return io.NodeOutput(image[:, :, :, cls.CHANNELS.index(channel)])
|
||||
|
||||
|
||||
class ImageColorToMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageColorToMask_V3",
|
||||
display_name="Image Color to Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Int.Input("color", default=0, min=0, max=0xFFFFFF),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, color) -> io.NodeOutput:
|
||||
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
|
||||
temp = (
|
||||
torch.bitwise_left_shift(temp[:, :, :, 0], 16)
|
||||
+ torch.bitwise_left_shift(temp[:, :, :, 1], 8)
|
||||
+ temp[:, :, :, 2]
|
||||
)
|
||||
return io.NodeOutput(torch.where(temp == color, 1.0, 0).float())
|
||||
|
||||
|
||||
class SolidMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SolidMask_V3",
|
||||
display_name="Solid Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION),
|
||||
io.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, value, width, height) -> io.NodeOutput:
|
||||
return io.NodeOutput(torch.full((1, height, width), value, dtype=torch.float32, device="cpu"))
|
||||
|
||||
|
||||
class InvertMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="InvertMask_V3",
|
||||
display_name="Invert Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Mask.Input("mask"),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, mask) -> io.NodeOutput:
|
||||
return io.NodeOutput(1.0 - mask)
|
||||
|
||||
|
||||
class CropMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -80,6 +235,66 @@ class CropMask(io.ComfyNode):
|
||||
return io.NodeOutput(mask[:, y : y + height, x : x + width])
|
||||
|
||||
|
||||
class MaskComposite(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="MaskComposite_V3",
|
||||
display_name="Mask Composite _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Mask.Input("destination"),
|
||||
io.Mask.Input("source"),
|
||||
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, operation) -> io.NodeOutput:
|
||||
output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
|
||||
source = source.reshape((-1, source.shape[-2], source.shape[-1]))
|
||||
|
||||
left, top = (
|
||||
x,
|
||||
y,
|
||||
)
|
||||
right, bottom = (
|
||||
min(left + source.shape[-1], destination.shape[-1]),
|
||||
min(top + source.shape[-2], destination.shape[-2]),
|
||||
)
|
||||
visible_width, visible_height = (
|
||||
right - left,
|
||||
bottom - top,
|
||||
)
|
||||
|
||||
source_portion = source[:, :visible_height, :visible_width]
|
||||
destination_portion = output[:, top:bottom, left:right]
|
||||
|
||||
if operation == "multiply":
|
||||
output[:, top:bottom, left:right] = destination_portion * source_portion
|
||||
elif operation == "add":
|
||||
output[:, top:bottom, left:right] = destination_portion + source_portion
|
||||
elif operation == "subtract":
|
||||
output[:, top:bottom, left:right] = destination_portion - source_portion
|
||||
elif operation == "and":
|
||||
output[:, top:bottom, left:right] = torch.bitwise_and(
|
||||
destination_portion.round().bool(), source_portion.round().bool()
|
||||
).float()
|
||||
elif operation == "or":
|
||||
output[:, top:bottom, left:right] = torch.bitwise_or(
|
||||
destination_portion.round().bool(), source_portion.round().bool()
|
||||
).float()
|
||||
elif operation == "xor":
|
||||
output[:, top:bottom, left:right] = torch.bitwise_xor(
|
||||
destination_portion.round().bool(), source_portion.round().bool()
|
||||
).float()
|
||||
|
||||
return io.NodeOutput(torch.clamp(output, 0.0, 1.0))
|
||||
|
||||
|
||||
class FeatherMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -158,183 +373,28 @@ class GrowMask(io.ComfyNode):
|
||||
return io.NodeOutput(torch.stack(out, dim=0))
|
||||
|
||||
|
||||
class ImageColorToMask(io.ComfyNode):
|
||||
class ThresholdMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageColorToMask_V3",
|
||||
display_name="Image Color to Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Int.Input("color", default=0, min=0, max=0xFFFFFF),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, color) -> io.NodeOutput:
|
||||
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
|
||||
temp = (
|
||||
torch.bitwise_left_shift(temp[:, :, :, 0], 16)
|
||||
+ torch.bitwise_left_shift(temp[:, :, :, 1], 8)
|
||||
+ temp[:, :, :, 2]
|
||||
)
|
||||
return io.NodeOutput(torch.where(temp == color, 1.0, 0).float())
|
||||
|
||||
|
||||
class ImageCompositeMasked(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageCompositeMasked_V3",
|
||||
display_name="Image Composite Masked _V3",
|
||||
category="image",
|
||||
inputs=[
|
||||
io.Image.Input("destination"),
|
||||
io.Image.Input("source"),
|
||||
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Boolean.Input("resize_source", default=False),
|
||||
io.Mask.Input("mask", optional=True),
|
||||
],
|
||||
outputs=[io.Image.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, resize_source, mask=None) -> io.NodeOutput:
|
||||
destination, source = node_helpers.image_alpha_fix(destination, source)
|
||||
destination = destination.clone().movedim(-1, 1)
|
||||
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
||||
return io.NodeOutput(output)
|
||||
|
||||
|
||||
class ImageToMask(io.ComfyNode):
|
||||
CHANNELS = ["red", "green", "blue", "alpha"]
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageToMask_V3",
|
||||
display_name="Convert Image to Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Combo.Input("channel", options=cls.CHANNELS),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, channel) -> io.NodeOutput:
|
||||
return io.NodeOutput(image[:, :, :, cls.CHANNELS.index(channel)])
|
||||
|
||||
|
||||
class InvertMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="InvertMask_V3",
|
||||
display_name="Invert Mask _V3",
|
||||
node_id="ThresholdMask_V3",
|
||||
display_name="Threshold Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Mask.Input("mask"),
|
||||
io.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, mask) -> io.NodeOutput:
|
||||
return io.NodeOutput(1.0 - mask)
|
||||
|
||||
|
||||
class LatentCompositeMasked(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentCompositeMasked_V3",
|
||||
display_name="Latent Composite Masked _V3",
|
||||
category="latent",
|
||||
inputs=[
|
||||
io.Latent.Input("destination"),
|
||||
io.Latent.Input("source"),
|
||||
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Boolean.Input("resize_source", default=False),
|
||||
io.Mask.Input("mask", optional=True),
|
||||
],
|
||||
outputs=[io.Latent.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, resize_source, mask=None) -> io.NodeOutput:
|
||||
output = destination.copy()
|
||||
destination_samples = destination["samples"].clone()
|
||||
source_samples = source["samples"]
|
||||
output["samples"] = composite(destination_samples, source_samples, x, y, mask, 8, resize_source)
|
||||
return io.NodeOutput(output)
|
||||
|
||||
|
||||
class MaskComposite(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="MaskComposite_V3",
|
||||
display_name="Mask Composite _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Mask.Input("destination"),
|
||||
io.Mask.Input("source"),
|
||||
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION),
|
||||
io.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, operation) -> io.NodeOutput:
|
||||
output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
|
||||
source = source.reshape((-1, source.shape[-2], source.shape[-1]))
|
||||
|
||||
left, top = (
|
||||
x,
|
||||
y,
|
||||
)
|
||||
right, bottom = (
|
||||
min(left + source.shape[-1], destination.shape[-1]),
|
||||
min(top + source.shape[-2], destination.shape[-2]),
|
||||
)
|
||||
visible_width, visible_height = (
|
||||
right - left,
|
||||
bottom - top,
|
||||
)
|
||||
|
||||
source_portion = source[:, :visible_height, :visible_width]
|
||||
destination_portion = output[:, top:bottom, left:right]
|
||||
|
||||
if operation == "multiply":
|
||||
output[:, top:bottom, left:right] = destination_portion * source_portion
|
||||
elif operation == "add":
|
||||
output[:, top:bottom, left:right] = destination_portion + source_portion
|
||||
elif operation == "subtract":
|
||||
output[:, top:bottom, left:right] = destination_portion - source_portion
|
||||
elif operation == "and":
|
||||
output[:, top:bottom, left:right] = torch.bitwise_and(
|
||||
destination_portion.round().bool(), source_portion.round().bool()
|
||||
).float()
|
||||
elif operation == "or":
|
||||
output[:, top:bottom, left:right] = torch.bitwise_or(
|
||||
destination_portion.round().bool(), source_portion.round().bool()
|
||||
).float()
|
||||
elif operation == "xor":
|
||||
output[:, top:bottom, left:right] = torch.bitwise_xor(
|
||||
destination_portion.round().bool(), source_portion.round().bool()
|
||||
).float()
|
||||
|
||||
return io.NodeOutput(torch.clamp(output, 0.0, 1.0))
|
||||
def execute(cls, mask, value) -> io.NodeOutput:
|
||||
return io.NodeOutput((mask > value).float())
|
||||
|
||||
|
||||
# Mask Preview - original implement from
|
||||
# https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81
|
||||
# upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
|
||||
class MaskPreview(io.ComfyNode):
|
||||
"""Mask Preview - original implement in ComfyUI_essentials.
|
||||
|
||||
@ -360,63 +420,6 @@ class MaskPreview(io.ComfyNode):
|
||||
return io.NodeOutput(ui=ui.PreviewMask(masks))
|
||||
|
||||
|
||||
class MaskToImage(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="MaskToImage_V3",
|
||||
display_name="Convert Mask to Image _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Mask.Input("mask"),
|
||||
],
|
||||
outputs=[io.Image.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, mask) -> io.NodeOutput:
|
||||
return io.NodeOutput(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3))
|
||||
|
||||
|
||||
class SolidMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SolidMask_V3",
|
||||
display_name="Solid Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION),
|
||||
io.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, value, width, height) -> io.NodeOutput:
|
||||
return io.NodeOutput(torch.full((1, height, width), value, dtype=torch.float32, device="cpu"))
|
||||
|
||||
|
||||
class ThresholdMask(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ThresholdMask_V3",
|
||||
display_name="Threshold Mask _V3",
|
||||
category="mask",
|
||||
inputs=[
|
||||
io.Mask.Input("mask"),
|
||||
io.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[io.Mask.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, mask, value) -> io.NodeOutput:
|
||||
return io.NodeOutput((mask > value).float())
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CropMask,
|
||||
FeatherMask,
|
||||
|
@ -33,6 +33,6 @@ class EmptyMochiLatentVideo(io.ComfyNode):
|
||||
return io.NodeOutput({"samples": latent})
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
EmptyMochiLatentVideo,
|
||||
]
|
||||
|
@ -17,7 +17,7 @@ class LCM(comfy.model_sampling.EPS):
|
||||
x0 = model_input - model_output * sigma
|
||||
|
||||
sigma_data = 0.5
|
||||
scaled_timestep = timestep * 10.0 #timestep_scaling
|
||||
scaled_timestep = timestep * 10.0 # timestep_scaling
|
||||
|
||||
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
|
||||
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
|
||||
@ -57,15 +57,16 @@ class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete)
|
||||
return log_sigma.exp().to(timestep.device)
|
||||
|
||||
|
||||
class ModelComputeDtype(io.ComfyNode):
|
||||
class ModelSamplingDiscrete(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelComputeDtype_V3",
|
||||
category="advanced/debug/model",
|
||||
node_id="ModelSamplingDiscrete_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Combo.Input("dtype", options=["default", "fp32", "fp16", "bf16"]),
|
||||
io.Combo.Input("sampling", options=["eps", "v_prediction", "lcm", "x0", "img_to_img"]),
|
||||
io.Boolean.Input("zsnr", default=False),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
@ -73,9 +74,150 @@ class ModelComputeDtype(io.ComfyNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, dtype):
|
||||
def execute(cls, model, sampling, zsnr):
|
||||
m = model.clone()
|
||||
m.set_model_compute_dtype(node_helpers.string_to_torch_dtype(dtype))
|
||||
|
||||
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
|
||||
if sampling == "eps":
|
||||
sampling_type = comfy.model_sampling.EPS
|
||||
elif sampling == "v_prediction":
|
||||
sampling_type = comfy.model_sampling.V_PREDICTION
|
||||
elif sampling == "lcm":
|
||||
sampling_type = LCM
|
||||
sampling_base = ModelSamplingDiscreteDistilled
|
||||
elif sampling == "x0":
|
||||
sampling_type = comfy.model_sampling.X0
|
||||
elif sampling == "img_to_img":
|
||||
sampling_type = comfy.model_sampling.IMG_TO_IMG
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config, zsnr=zsnr)
|
||||
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelSamplingStableCascade(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingStableCascade_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("shift", default=2.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, shift):
|
||||
m = model.clone()
|
||||
|
||||
sampling_base = comfy.model_sampling.StableCascadeSampling
|
||||
sampling_type = comfy.model_sampling.EPS
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
model_sampling.set_parameters(shift)
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelSamplingSD3(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingSD3_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("shift", default=3.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, shift, multiplier: int | float = 1000):
|
||||
m = model.clone()
|
||||
|
||||
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
|
||||
sampling_type = comfy.model_sampling.CONST
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
model_sampling.set_parameters(shift=shift, multiplier=multiplier)
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelSamplingAuraFlow(ModelSamplingSD3):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingAuraFlow_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("shift", default=1.73, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, shift, multiplier: int | float = 1.0):
|
||||
return super().execute(model, shift, multiplier)
|
||||
|
||||
|
||||
class ModelSamplingFlux(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingFlux_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("max_shift", default=1.15, min=0.0, max=100.0, step=0.01),
|
||||
io.Float.Input("base_shift", default=0.5, min=0.0, max=100.0, step=0.01),
|
||||
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, max_shift, base_shift, width, height):
|
||||
m = model.clone()
|
||||
|
||||
x1 = 256
|
||||
x2 = 4096
|
||||
mm = (max_shift - base_shift) / (x2 - x1)
|
||||
b = base_shift - mm * x1
|
||||
shift = (width * height / (8 * 8 * 2 * 2)) * mm + b
|
||||
|
||||
sampling_base = comfy.model_sampling.ModelSamplingFlux
|
||||
sampling_type = comfy.model_sampling.CONST
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
model_sampling.set_parameters(shift=shift)
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
@ -165,170 +307,6 @@ class ModelSamplingContinuousV(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelSamplingDiscrete(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingDiscrete_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Combo.Input("sampling", options=["eps", "v_prediction", "lcm", "x0", "img_to_img"]),
|
||||
io.Boolean.Input("zsnr", default=False),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, sampling, zsnr):
|
||||
m = model.clone()
|
||||
|
||||
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
|
||||
if sampling == "eps":
|
||||
sampling_type = comfy.model_sampling.EPS
|
||||
elif sampling == "v_prediction":
|
||||
sampling_type = comfy.model_sampling.V_PREDICTION
|
||||
elif sampling == "lcm":
|
||||
sampling_type = LCM
|
||||
sampling_base = ModelSamplingDiscreteDistilled
|
||||
elif sampling == "x0":
|
||||
sampling_type = comfy.model_sampling.X0
|
||||
elif sampling == "img_to_img":
|
||||
sampling_type = comfy.model_sampling.IMG_TO_IMG
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config, zsnr=zsnr)
|
||||
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelSamplingFlux(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingFlux_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("max_shift", default=1.15, min=0.0, max=100.0, step=0.01),
|
||||
io.Float.Input("base_shift", default=0.5, min=0.0, max=100.0, step=0.01),
|
||||
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, max_shift, base_shift, width, height):
|
||||
m = model.clone()
|
||||
|
||||
x1 = 256
|
||||
x2 = 4096
|
||||
mm = (max_shift - base_shift) / (x2 - x1)
|
||||
b = base_shift - mm * x1
|
||||
shift = (width * height / (8 * 8 * 2 * 2)) * mm + b
|
||||
|
||||
sampling_base = comfy.model_sampling.ModelSamplingFlux
|
||||
sampling_type = comfy.model_sampling.CONST
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
model_sampling.set_parameters(shift=shift)
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelSamplingSD3(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingSD3_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("shift", default=3.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, shift, multiplier: int | float = 1000):
|
||||
m = model.clone()
|
||||
|
||||
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
|
||||
sampling_type = comfy.model_sampling.CONST
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
model_sampling.set_parameters(shift=shift, multiplier=multiplier)
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelSamplingAuraFlow(ModelSamplingSD3):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingAuraFlow_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("shift", default=1.73, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, shift, multiplier: int | float = 1.0):
|
||||
return super().execute(model, shift, multiplier)
|
||||
|
||||
|
||||
class ModelSamplingStableCascade(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSamplingStableCascade_V3",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("shift", default=2.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, shift):
|
||||
m = model.clone()
|
||||
|
||||
sampling_base = comfy.model_sampling.StableCascadeSampling
|
||||
sampling_type = comfy.model_sampling.EPS
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
model_sampling.set_parameters(shift)
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class RescaleCFG(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -374,7 +352,29 @@ class RescaleCFG(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
class ModelComputeDtype(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelComputeDtype_V3",
|
||||
category="advanced/debug/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Combo.Input("dtype", options=["default", "fp32", "fp16", "bf16"]),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, dtype):
|
||||
m = model.clone()
|
||||
m.set_model_compute_dtype(node_helpers.string_to_torch_dtype(dtype))
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
ModelSamplingAuraFlow,
|
||||
ModelComputeDtype,
|
||||
ModelSamplingContinuousEDM,
|
||||
|
@ -63,6 +63,6 @@ class PatchModelAddDownscale(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
PatchModelAddDownscale,
|
||||
]
|
||||
|
422
comfy_extras/v3/nodes_model_merging.py
Normal file
422
comfy_extras/v3/nodes_model_merging.py
Normal file
@ -0,0 +1,422 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
import comfy.model_base
|
||||
import comfy.model_management
|
||||
import comfy.model_sampling
|
||||
import comfy.sd
|
||||
import comfy.utils
|
||||
import folder_paths
|
||||
from comfy.cli_args import args
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir)
|
||||
prompt_info = ""
|
||||
if prompt is not None:
|
||||
prompt_info = json.dumps(prompt)
|
||||
|
||||
metadata = {}
|
||||
|
||||
enable_modelspec = True
|
||||
if isinstance(model.model, comfy.model_base.SDXL):
|
||||
if isinstance(model.model, comfy.model_base.SDXL_instructpix2pix):
|
||||
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-edit"
|
||||
else:
|
||||
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base"
|
||||
elif isinstance(model.model, comfy.model_base.SDXLRefiner):
|
||||
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner"
|
||||
elif isinstance(model.model, comfy.model_base.SVD_img2vid):
|
||||
metadata["modelspec.architecture"] = "stable-video-diffusion-img2vid-v1"
|
||||
elif isinstance(model.model, comfy.model_base.SD3):
|
||||
metadata["modelspec.architecture"] = "stable-diffusion-v3-medium" #TODO: other SD3 variants
|
||||
else:
|
||||
enable_modelspec = False
|
||||
|
||||
if enable_modelspec:
|
||||
metadata["modelspec.sai_model_spec"] = "1.0.0"
|
||||
metadata["modelspec.implementation"] = "sgm"
|
||||
metadata["modelspec.title"] = "{} {}".format(filename, counter)
|
||||
|
||||
#TODO:
|
||||
# "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512",
|
||||
# "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h",
|
||||
# "v2-inpainting"
|
||||
|
||||
extra_keys = {}
|
||||
model_sampling = model.get_model_object("model_sampling")
|
||||
if isinstance(model_sampling, comfy.model_sampling.ModelSamplingContinuousEDM):
|
||||
if isinstance(model_sampling, comfy.model_sampling.V_PREDICTION):
|
||||
extra_keys["edm_vpred.sigma_max"] = torch.tensor(model_sampling.sigma_max).float()
|
||||
extra_keys["edm_vpred.sigma_min"] = torch.tensor(model_sampling.sigma_min).float()
|
||||
|
||||
if model.model.model_type == comfy.model_base.ModelType.EPS:
|
||||
metadata["modelspec.predict_key"] = "epsilon"
|
||||
elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION:
|
||||
metadata["modelspec.predict_key"] = "v"
|
||||
extra_keys["v_pred"] = torch.tensor([])
|
||||
if getattr(model_sampling, "zsnr", False):
|
||||
extra_keys["ztsnr"] = torch.tensor([])
|
||||
|
||||
if not args.disable_metadata:
|
||||
metadata["prompt"] = prompt_info
|
||||
if extra_pnginfo is not None:
|
||||
for x in extra_pnginfo:
|
||||
metadata[x] = json.dumps(extra_pnginfo[x])
|
||||
|
||||
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
|
||||
comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata, extra_keys=extra_keys)
|
||||
|
||||
|
||||
class ModelMergeSimple(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSimple_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model1, model2, ratio):
|
||||
m = model1.clone()
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
for k in kp:
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelSubtract(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSubtract_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01)
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model1, model2, multiplier):
|
||||
m = model1.clone()
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
for k in kp:
|
||||
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelAdd(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelMergeAdd_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2")
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model1, model2):
|
||||
m = model1.clone()
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
for k in kp:
|
||||
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class CLIPMergeSimple(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPMergeSimple_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Clip.Input("clip1"),
|
||||
io.Clip.Input("clip2"),
|
||||
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
],
|
||||
outputs=[
|
||||
io.Clip.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip1, clip2, ratio):
|
||||
m = clip1.clone()
|
||||
kp = clip2.get_key_patches()
|
||||
for k in kp:
|
||||
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
||||
continue
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class CLIPSubtract(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPMergeSubtract_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Clip.Input("clip1"),
|
||||
io.Clip.Input("clip2"),
|
||||
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01)
|
||||
],
|
||||
outputs=[
|
||||
io.Clip.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip1, clip2, multiplier):
|
||||
m = clip1.clone()
|
||||
kp = clip2.get_key_patches()
|
||||
for k in kp:
|
||||
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
||||
continue
|
||||
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class CLIPAdd(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPMergeAdd_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Clip.Input("clip1"),
|
||||
io.Clip.Input("clip2")
|
||||
],
|
||||
outputs=[
|
||||
io.Clip.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip1, clip2):
|
||||
m = clip1.clone()
|
||||
kp = clip2.get_key_patches()
|
||||
for k in kp:
|
||||
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
||||
continue
|
||||
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class ModelMergeBlocks(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelMergeBlocks_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("input", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("middle", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("out", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model1, model2, **kwargs):
|
||||
m = model1.clone()
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
default_ratio = next(iter(kwargs.values()))
|
||||
|
||||
for k in kp:
|
||||
ratio = default_ratio
|
||||
k_unet = k[len("diffusion_model."):]
|
||||
|
||||
last_arg_size = 0
|
||||
for arg in kwargs:
|
||||
if k_unet.startswith(arg) and last_arg_size < len(arg):
|
||||
ratio = kwargs[arg]
|
||||
last_arg_size = len(arg)
|
||||
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class CheckpointSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CheckpointSave_V3",
|
||||
display_name="Save Checkpoint _V3",
|
||||
category="advanced/model_merging",
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Clip.Input("clip"),
|
||||
io.Vae.Input("vae"),
|
||||
io.String.Input("filename_prefix", default="checkpoints/ComfyUI")
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, clip, vae, filename_prefix):
|
||||
save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=folder_paths.get_output_directory(), prompt=cls.hidden.prompt, extra_pnginfo=cls.hidden.extra_pnginfo)
|
||||
return io.NodeOutput()
|
||||
|
||||
|
||||
class CLIPSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPSave_V3",
|
||||
category="advanced/model_merging",
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("filename_prefix", default="clip/ComfyUI")
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip, filename_prefix):
|
||||
prompt_info = ""
|
||||
if cls.hidden.prompt is not None:
|
||||
prompt_info = json.dumps(cls.hidden.prompt)
|
||||
|
||||
metadata = {}
|
||||
if not args.disable_metadata:
|
||||
metadata["format"] = "pt"
|
||||
metadata["prompt"] = prompt_info
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
comfy.model_management.load_models_gpu([clip.load_model()], force_patch_weights=True)
|
||||
clip_sd = clip.get_sd()
|
||||
|
||||
for prefix in ["clip_l.", "clip_g.", "clip_h.", "t5xxl.", "pile_t5xl.", "mt5xl.", "umt5xxl.", "t5base.", "gemma2_2b.", "llama.", "hydit_clip.", ""]:
|
||||
k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
|
||||
current_clip_sd = {}
|
||||
for x in k:
|
||||
current_clip_sd[x] = clip_sd.pop(x)
|
||||
if len(current_clip_sd) == 0:
|
||||
continue
|
||||
|
||||
p = prefix[:-1]
|
||||
replace_prefix = {}
|
||||
filename_prefix_ = filename_prefix
|
||||
if len(p) > 0:
|
||||
filename_prefix_ = "{}_{}".format(filename_prefix_, p)
|
||||
replace_prefix[prefix] = ""
|
||||
replace_prefix["transformer."] = ""
|
||||
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, folder_paths.get_output_directory())
|
||||
|
||||
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
|
||||
current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix)
|
||||
|
||||
comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata)
|
||||
return io.NodeOutput()
|
||||
|
||||
|
||||
class VAESave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VAESave_V3",
|
||||
category="advanced/model_merging",
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.Vae.Input("vae"),
|
||||
io.String.Input("filename_prefix", default="vae/ComfyUI_vae")
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, vae, filename_prefix):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
|
||||
prompt_info = ""
|
||||
if cls.hidden.prompt is not None:
|
||||
prompt_info = json.dumps(cls.hidden.prompt)
|
||||
|
||||
metadata = {}
|
||||
if not args.disable_metadata:
|
||||
metadata["prompt"] = prompt_info
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
|
||||
comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata)
|
||||
return io.NodeOutput()
|
||||
|
||||
|
||||
class ModelSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSave_V3",
|
||||
category="advanced/model_merging",
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.String.Input("filename_prefix", default="diffusion_models/ComfyUI")
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, filename_prefix):
|
||||
save_checkpoint(model, filename_prefix=filename_prefix, output_dir=folder_paths.get_output_directory(), prompt=cls.hidden.prompt, extra_pnginfo=cls.hidden.extra_pnginfo)
|
||||
return io.NodeOutput()
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CheckpointSave,
|
||||
CLIPAdd,
|
||||
CLIPMergeSimple,
|
||||
CLIPSave,
|
||||
CLIPSubtract,
|
||||
ModelAdd,
|
||||
ModelMergeBlocks,
|
||||
ModelMergeSimple,
|
||||
ModelSave,
|
||||
ModelSubtract,
|
||||
VAESave,
|
||||
]
|
399
comfy_extras/v3/nodes_model_merging_model_specific.py
Normal file
399
comfy_extras/v3/nodes_model_merging_model_specific.py
Normal file
@ -0,0 +1,399 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from comfy_api.latest import io
|
||||
from comfy_extras.v3.nodes_model_merging import ModelMergeBlocks
|
||||
|
||||
|
||||
class ModelMergeSD1(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("time_embed.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("label_emb.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(12):
|
||||
inputs.append(io.Float.Input(f"input_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
for i in range(3):
|
||||
inputs.append(io.Float.Input(f"middle_block.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
for i in range(12):
|
||||
inputs.append(io.Float.Input(f"output_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("out.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSD1_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeSDXL(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("time_embed.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("label_emb.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(9):
|
||||
inputs.append(io.Float.Input(f"input_blocks.{i}", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
for i in range(3):
|
||||
inputs.append(io.Float.Input(f"middle_block.{i}", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
for i in range(9):
|
||||
inputs.append(io.Float.Input(f"output_blocks.{i}", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("out.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSDXL_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeSD3_2B(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("pos_embed.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("context_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("y_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(24):
|
||||
inputs.append(io.Float.Input(f"joint_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSD3_2B_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeAuraflow(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("init_x_linear.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("positional_encoding", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("cond_seq_linear.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("register_tokens", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(4):
|
||||
inputs.append(io.Float.Input(f"double_layers.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
for i in range(32):
|
||||
inputs.append(io.Float.Input(f"single_layers.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.extend([
|
||||
io.Float.Input("modF.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("final_linear.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
])
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeAuraflow_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeFlux1(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("img_in.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("time_in.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("guidance_in", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("vector_in.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("txt_in.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(19):
|
||||
inputs.append(io.Float.Input(f"double_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
for i in range(38):
|
||||
inputs.append(io.Float.Input(f"single_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeFlux1_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeSD35_Large(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("pos_embed.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("context_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("y_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(38):
|
||||
inputs.append(io.Float.Input(f"joint_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSD35_Large_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeMochiPreview(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("pos_frequencies.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t5_y_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t5_yproj.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(48):
|
||||
inputs.append(io.Float.Input(f"blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeMochiPreview_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeLTXV(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("patchify_proj.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("adaln_single.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("caption_projection.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(28):
|
||||
inputs.append(io.Float.Input(f"transformer_blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.extend([
|
||||
io.Float.Input("scale_shift_table", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("proj_out.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
])
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeLTXV_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeCosmos7B(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("extra_pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("affline_norm.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(28):
|
||||
inputs.append(io.Float.Input(f"blocks.block{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeCosmos7B_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeCosmos14B(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("extra_pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("affline_norm.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(36):
|
||||
inputs.append(io.Float.Input(f"blocks.block{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeCosmos14B_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeWAN2_1(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("patch_embedding.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("time_embedding.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("time_projection.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("text_embedding.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("img_emb.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(40):
|
||||
inputs.append(io.Float.Input(f"blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("head.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeWAN2_1_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
description="1.3B model has 30 blocks, 14B model has 40 blocks. Image to video model has the extra img_emb.",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeCosmosPredict2_2B(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedding_norm.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(28):
|
||||
inputs.append(io.Float.Input(f"blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeCosmosPredict2_2B_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeCosmosPredict2_14B(ModelMergeBlocks):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("pos_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("x_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedder.", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("t_embedding_norm.", default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
]
|
||||
|
||||
for i in range(36):
|
||||
inputs.append(io.Float.Input(f"blocks.{i}.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
inputs.append(io.Float.Input("final_layer.", default=1.0, min=0.0, max=1.0, step=0.01))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeCosmosPredict2_14B_V3",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
ModelMergeAuraflow,
|
||||
ModelMergeCosmos14B,
|
||||
ModelMergeCosmos7B,
|
||||
ModelMergeCosmosPredict2_14B,
|
||||
ModelMergeCosmosPredict2_2B,
|
||||
ModelMergeFlux1,
|
||||
ModelMergeLTXV,
|
||||
ModelMergeMochiPreview,
|
||||
ModelMergeSD1,
|
||||
ModelMergeSD3_2B,
|
||||
ModelMergeSD35_Large,
|
||||
ModelMergeSDXL,
|
||||
ModelMergeWAN2_1,
|
||||
]
|
@ -16,6 +16,47 @@ import comfy.model_management
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class Morphology(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Morphology_V3",
|
||||
display_name="ImageMorphology _V3",
|
||||
category="image/postprocessing",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Combo.Input("operation", options=["erode", "dilate", "open", "close", "gradient", "bottom_hat", "top_hat"]),
|
||||
io.Int.Input("kernel_size", default=3, min=3, max=999, step=1),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, operation, kernel_size):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
kernel = torch.ones(kernel_size, kernel_size, device=device)
|
||||
image_k = image.to(device).movedim(-1, 1)
|
||||
if operation == "erode":
|
||||
output = erosion(image_k, kernel)
|
||||
elif operation == "dilate":
|
||||
output = dilation(image_k, kernel)
|
||||
elif operation == "open":
|
||||
output = opening(image_k, kernel)
|
||||
elif operation == "close":
|
||||
output = closing(image_k, kernel)
|
||||
elif operation == "gradient":
|
||||
output = gradient(image_k, kernel)
|
||||
elif operation == "top_hat":
|
||||
output = top_hat(image_k, kernel)
|
||||
elif operation == "bottom_hat":
|
||||
output = bottom_hat(image_k, kernel)
|
||||
else:
|
||||
raise ValueError(f"Invalid operation {operation} for morphology. Must be one of 'erode', 'dilate', 'open', 'close', 'gradient', 'tophat', 'bottomhat'")
|
||||
return io.NodeOutput(output.to(comfy.model_management.intermediate_device()).movedim(1, -1))
|
||||
|
||||
|
||||
class ImageRGBToYUV(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -60,48 +101,7 @@ class ImageYUVToRGB(io.ComfyNode):
|
||||
return io.NodeOutput(kornia.color.ycbcr_to_rgb(image.movedim(-1, 1)).movedim(1, -1))
|
||||
|
||||
|
||||
class Morphology(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Morphology_V3",
|
||||
display_name="ImageMorphology _V3",
|
||||
category="image/postprocessing",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Combo.Input("operation", options=["erode", "dilate", "open", "close", "gradient", "bottom_hat", "top_hat"]),
|
||||
io.Int.Input("kernel_size", default=3, min=3, max=999, step=1),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, operation, kernel_size):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
kernel = torch.ones(kernel_size, kernel_size, device=device)
|
||||
image_k = image.to(device).movedim(-1, 1)
|
||||
if operation == "erode":
|
||||
output = erosion(image_k, kernel)
|
||||
elif operation == "dilate":
|
||||
output = dilation(image_k, kernel)
|
||||
elif operation == "open":
|
||||
output = opening(image_k, kernel)
|
||||
elif operation == "close":
|
||||
output = closing(image_k, kernel)
|
||||
elif operation == "gradient":
|
||||
output = gradient(image_k, kernel)
|
||||
elif operation == "top_hat":
|
||||
output = top_hat(image_k, kernel)
|
||||
elif operation == "bottom_hat":
|
||||
output = bottom_hat(image_k, kernel)
|
||||
else:
|
||||
raise ValueError(f"Invalid operation {operation} for morphology. Must be one of 'erode', 'dilate', 'open', 'close', 'gradient', 'tophat', 'bottomhat'")
|
||||
return io.NodeOutput(output.to(comfy.model_management.intermediate_device()).movedim(1, -1))
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
ImageRGBToYUV,
|
||||
ImageYUVToRGB,
|
||||
Morphology,
|
||||
|
@ -59,4 +59,6 @@ class OptimalStepsScheduler(io.ComfyNode):
|
||||
return io.NodeOutput(torch.FloatTensor(sigmas))
|
||||
|
||||
|
||||
NODES_LIST = [OptimalStepsScheduler]
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
OptimalStepsScheduler,
|
||||
]
|
||||
|
@ -57,4 +57,6 @@ class PerturbedAttentionGuidance(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [PerturbedAttentionGuidance]
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
PerturbedAttentionGuidance,
|
||||
]
|
||||
|
@ -109,4 +109,6 @@ class PerpNegGuider(io.ComfyNode):
|
||||
return io.NodeOutput(guider)
|
||||
|
||||
|
||||
NODES_LIST = [PerpNegGuider]
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
PerpNegGuider,
|
||||
]
|
||||
|
@ -121,6 +121,32 @@ class PhotoMakerIDEncoder(comfy.clip_model.CLIPVisionModelProjection):
|
||||
return self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
|
||||
|
||||
|
||||
class PhotoMakerLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="PhotoMakerLoader_V3",
|
||||
category="_for_testing/photomaker",
|
||||
inputs=[
|
||||
io.Combo.Input("photomaker_model_name", options=folder_paths.get_filename_list("photomaker")),
|
||||
],
|
||||
outputs=[
|
||||
io.Photomaker.Output(),
|
||||
],
|
||||
is_experimental=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, photomaker_model_name):
|
||||
photomaker_model_path = folder_paths.get_full_path_or_raise("photomaker", photomaker_model_name)
|
||||
photomaker_model = PhotoMakerIDEncoder()
|
||||
data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True)
|
||||
if "id_encoder" in data:
|
||||
data = data["id_encoder"]
|
||||
photomaker_model.load_state_dict(data)
|
||||
return io.NodeOutput(photomaker_model)
|
||||
|
||||
|
||||
class PhotoMakerEncode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -173,33 +199,7 @@ class PhotoMakerEncode(io.ComfyNode):
|
||||
return io.NodeOutput([[out, {"pooled_output": pooled}]])
|
||||
|
||||
|
||||
class PhotoMakerLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="PhotoMakerLoader_V3",
|
||||
category="_for_testing/photomaker",
|
||||
inputs=[
|
||||
io.Combo.Input("photomaker_model_name", options=folder_paths.get_filename_list("photomaker")),
|
||||
],
|
||||
outputs=[
|
||||
io.Photomaker.Output(),
|
||||
],
|
||||
is_experimental=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, photomaker_model_name):
|
||||
photomaker_model_path = folder_paths.get_full_path_or_raise("photomaker", photomaker_model_name)
|
||||
photomaker_model = PhotoMakerIDEncoder()
|
||||
data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True)
|
||||
if "id_encoder" in data:
|
||||
data = data["id_encoder"]
|
||||
photomaker_model.load_state_dict(data)
|
||||
return io.NodeOutput(photomaker_model)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
PhotoMakerEncode,
|
||||
PhotoMakerLoader,
|
||||
]
|
||||
|
@ -28,6 +28,6 @@ class CLIPTextEncodePixArtAlpha(io.ComfyNode):
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens, add_dict={"width": width, "height": height}))
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPTextEncodePixArtAlpha,
|
||||
]
|
||||
|
@ -13,13 +13,6 @@ import node_helpers
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
|
||||
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
|
||||
d = torch.sqrt(x * x + y * y)
|
||||
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
||||
return g / g.sum()
|
||||
|
||||
|
||||
class Blend(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -109,36 +102,11 @@ class Blur(io.ComfyNode):
|
||||
return io.NodeOutput(blurred.to(comfy.model_management.intermediate_device()))
|
||||
|
||||
|
||||
class ImageScaleToTotalPixels(io.ComfyNode):
|
||||
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
||||
crop_methods = ["disabled", "center"]
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageScaleToTotalPixels_V3",
|
||||
category="image/upscaling",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Combo.Input("upscale_method", options=cls.upscale_methods),
|
||||
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, upscale_method, megapixels):
|
||||
samples = image.movedim(-1,1)
|
||||
total = int(megapixels * 1024 * 1024)
|
||||
|
||||
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
||||
width = round(samples.shape[3] * scale_by)
|
||||
height = round(samples.shape[2] * scale_by)
|
||||
|
||||
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
||||
return io.NodeOutput(s.movedim(1,-1))
|
||||
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
|
||||
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
|
||||
d = torch.sqrt(x * x + y * y)
|
||||
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
||||
return g / g.sum()
|
||||
|
||||
|
||||
class Quantize(io.ComfyNode):
|
||||
@ -246,7 +214,39 @@ class Sharpen(io.ComfyNode):
|
||||
return io.NodeOutput(result.to(comfy.model_management.intermediate_device()))
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
class ImageScaleToTotalPixels(io.ComfyNode):
|
||||
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
||||
crop_methods = ["disabled", "center"]
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageScaleToTotalPixels_V3",
|
||||
category="image/upscaling",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Combo.Input("upscale_method", options=cls.upscale_methods),
|
||||
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image, upscale_method, megapixels):
|
||||
samples = image.movedim(-1,1)
|
||||
total = int(megapixels * 1024 * 1024)
|
||||
|
||||
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
||||
width = round(samples.shape[3] * scale_by)
|
||||
height = round(samples.shape[2] * scale_by)
|
||||
|
||||
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
||||
return io.NodeOutput(s.movedim(1,-1))
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
Blend,
|
||||
Blur,
|
||||
ImageScaleToTotalPixels,
|
||||
|
@ -142,7 +142,7 @@ class LatentRebatch(io.ComfyNode):
|
||||
return io.NodeOutput(output_list)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
ImageRebatch,
|
||||
LatentRebatch,
|
||||
]
|
||||
|
@ -186,4 +186,6 @@ class SelfAttentionGuidance(io.ComfyNode):
|
||||
|
||||
return io.NodeOutput(m)
|
||||
|
||||
NODES_LIST = [SelfAttentionGuidance]
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
SelfAttentionGuidance,
|
||||
]
|
||||
|
@ -10,6 +10,59 @@ from comfy_api.latest import io
|
||||
from comfy_extras.v3.nodes_slg import SkipLayerGuidanceDiT
|
||||
|
||||
|
||||
class TripleCLIPLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="TripleCLIPLoader_V3",
|
||||
category="advanced/loaders",
|
||||
description="[Recipes]\n\nsd3: clip-l, clip-g, t5",
|
||||
inputs=[
|
||||
io.Combo.Input("clip_name1", options=folder_paths.get_filename_list("text_encoders")),
|
||||
io.Combo.Input("clip_name2", options=folder_paths.get_filename_list("text_encoders")),
|
||||
io.Combo.Input("clip_name3", options=folder_paths.get_filename_list("text_encoders")),
|
||||
],
|
||||
outputs=[
|
||||
io.Clip.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip_name1: str, clip_name2: str, clip_name3: str):
|
||||
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
|
||||
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
|
||||
clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3)
|
||||
clip = comfy.sd.load_clip(
|
||||
ckpt_paths=[clip_path1, clip_path2, clip_path3],
|
||||
embedding_directory=folder_paths.get_folder_paths("embeddings"),
|
||||
)
|
||||
return io.NodeOutput(clip)
|
||||
|
||||
|
||||
class EmptySD3LatentImage(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="EmptySD3LatentImage_V3",
|
||||
category="latent/sd3",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, width: int, height: int, batch_size=1):
|
||||
latent = torch.zeros(
|
||||
[batch_size, 16, height // 8, width // 8], device=comfy.model_management.intermediate_device()
|
||||
)
|
||||
return io.NodeOutput({"samples":latent})
|
||||
|
||||
|
||||
class CLIPTextEncodeSD3(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -54,30 +107,6 @@ class CLIPTextEncodeSD3(io.ComfyNode):
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
class EmptySD3LatentImage(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="EmptySD3LatentImage_V3",
|
||||
category="latent/sd3",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, width: int, height: int, batch_size=1):
|
||||
latent = torch.zeros(
|
||||
[batch_size, 16, height // 8, width // 8], device=comfy.model_management.intermediate_device()
|
||||
)
|
||||
return io.NodeOutput({"samples":latent})
|
||||
|
||||
|
||||
class SkipLayerGuidanceSD3(SkipLayerGuidanceDiT):
|
||||
"""
|
||||
Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers.
|
||||
@ -108,36 +137,7 @@ class SkipLayerGuidanceSD3(SkipLayerGuidanceDiT):
|
||||
model=model, scale=scale, start_percent=start_percent, end_percent=end_percent, double_layers=layers
|
||||
)
|
||||
|
||||
|
||||
class TripleCLIPLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="TripleCLIPLoader_V3",
|
||||
category="advanced/loaders",
|
||||
description="[Recipes]\n\nsd3: clip-l, clip-g, t5",
|
||||
inputs=[
|
||||
io.Combo.Input("clip_name1", options=folder_paths.get_filename_list("text_encoders")),
|
||||
io.Combo.Input("clip_name2", options=folder_paths.get_filename_list("text_encoders")),
|
||||
io.Combo.Input("clip_name3", options=folder_paths.get_filename_list("text_encoders")),
|
||||
],
|
||||
outputs=[
|
||||
io.Clip.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip_name1: str, clip_name2: str, clip_name3: str):
|
||||
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
|
||||
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
|
||||
clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3)
|
||||
clip = comfy.sd.load_clip(
|
||||
ckpt_paths=[clip_path1, clip_path2, clip_path3],
|
||||
embedding_directory=folder_paths.get_folder_paths("embeddings"),
|
||||
)
|
||||
return io.NodeOutput(clip)
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CLIPTextEncodeSD3,
|
||||
EmptySD3LatentImage,
|
||||
SkipLayerGuidanceSD3,
|
||||
|
@ -53,4 +53,6 @@ class SD_4XUpscale_Conditioning(io.ComfyNode):
|
||||
latent = torch.zeros([images.shape[0], 4, height // 4, width // 4])
|
||||
return io.NodeOutput(out_cp, out_cn, {"samples":latent})
|
||||
|
||||
NODES_LIST = [SD_4XUpscale_Conditioning]
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
SD_4XUpscale_Conditioning,
|
||||
]
|
||||
|
@ -167,7 +167,7 @@ class SkipLayerGuidanceDiTSimple(io.ComfyNode):
|
||||
|
||||
return io.NodeOutput(m)
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
SkipLayerGuidanceDiT,
|
||||
SkipLayerGuidanceDiTSimple,
|
||||
]
|
||||
|
165
comfy_extras/v3/nodes_stable3d.py
Normal file
165
comfy_extras/v3/nodes_stable3d.py
Normal file
@ -0,0 +1,165 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
|
||||
import comfy.utils
|
||||
import nodes
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
def camera_embeddings(elevation, azimuth):
|
||||
elevation = torch.as_tensor([elevation])
|
||||
azimuth = torch.as_tensor([azimuth])
|
||||
embeddings = torch.stack(
|
||||
[
|
||||
torch.deg2rad(
|
||||
(90 - elevation) - 90
|
||||
), # Zero123 polar is 90-elevation
|
||||
torch.sin(torch.deg2rad(azimuth)),
|
||||
torch.cos(torch.deg2rad(azimuth)),
|
||||
torch.deg2rad(
|
||||
90 - torch.full_like(elevation, 0)
|
||||
),
|
||||
], dim=-1).unsqueeze(1)
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
class StableZero123_Conditioning(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StableZero123_Conditioning_V3",
|
||||
category="conditioning/3d_models",
|
||||
inputs=[
|
||||
io.ClipVision.Input("clip_vision"),
|
||||
io.Image.Input("init_image"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=256, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("height", default=256, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
io.Float.Input("elevation", default=0.0, min=-180.0, max=180.0, step=0.1, round=False),
|
||||
io.Float.Input("azimuth", default=0.0, min=-180.0, max=180.0, step=0.1, round=False)
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth):
|
||||
output = clip_vision.encode_image(init_image)
|
||||
pooled = output.image_embeds.unsqueeze(0)
|
||||
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
||||
encode_pixels = pixels[:,:,:,:3]
|
||||
t = vae.encode(encode_pixels)
|
||||
cam_embeds = camera_embeddings(elevation, azimuth)
|
||||
cond = torch.cat([pooled, cam_embeds.to(pooled.device).repeat((pooled.shape[0], 1, 1))], dim=-1)
|
||||
|
||||
positive = [[cond, {"concat_latent_image": t}]]
|
||||
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
|
||||
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
||||
return io.NodeOutput(positive, negative, {"samples":latent})
|
||||
|
||||
|
||||
class StableZero123_Conditioning_Batched(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StableZero123_Conditioning_Batched_V3",
|
||||
category="conditioning/3d_models",
|
||||
inputs=[
|
||||
io.ClipVision.Input("clip_vision"),
|
||||
io.Image.Input("init_image"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=256, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("height", default=256, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
io.Float.Input("elevation", default=0.0, min=-180.0, max=180.0, step=0.1, round=False),
|
||||
io.Float.Input("azimuth", default=0.0, min=-180.0, max=180.0, step=0.1, round=False),
|
||||
io.Float.Input("elevation_batch_increment", default=0.0, min=-180.0, max=180.0, step=0.1, round=False),
|
||||
io.Float.Input("azimuth_batch_increment", default=0.0, min=-180.0, max=180.0, step=0.1, round=False)
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth, elevation_batch_increment, azimuth_batch_increment):
|
||||
output = clip_vision.encode_image(init_image)
|
||||
pooled = output.image_embeds.unsqueeze(0)
|
||||
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
||||
encode_pixels = pixels[:,:,:,:3]
|
||||
t = vae.encode(encode_pixels)
|
||||
|
||||
cam_embeds = []
|
||||
for i in range(batch_size):
|
||||
cam_embeds.append(camera_embeddings(elevation, azimuth))
|
||||
elevation += elevation_batch_increment
|
||||
azimuth += azimuth_batch_increment
|
||||
|
||||
cam_embeds = torch.cat(cam_embeds, dim=0)
|
||||
cond = torch.cat([comfy.utils.repeat_to_batch_size(pooled, batch_size), cam_embeds], dim=-1)
|
||||
|
||||
positive = [[cond, {"concat_latent_image": t}]]
|
||||
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
|
||||
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
||||
return io.NodeOutput(positive, negative, {"samples":latent, "batch_index": [0] * batch_size})
|
||||
|
||||
|
||||
class SV3D_Conditioning(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SV3D_Conditioning_V3",
|
||||
category="conditioning/3d_models",
|
||||
inputs=[
|
||||
io.ClipVision.Input("clip_vision"),
|
||||
io.Image.Input("init_image"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=576, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("height", default=576, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("video_frames", default=21, min=1, max=4096),
|
||||
io.Float.Input("elevation", default=0.0, min=-90.0, max=90.0, step=0.1, round=False)
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip_vision, init_image, vae, width, height, video_frames, elevation):
|
||||
output = clip_vision.encode_image(init_image)
|
||||
pooled = output.image_embeds.unsqueeze(0)
|
||||
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
||||
encode_pixels = pixels[:,:,:,:3]
|
||||
t = vae.encode(encode_pixels)
|
||||
|
||||
azimuth = 0
|
||||
azimuth_increment = 360 / (max(video_frames, 2) - 1)
|
||||
|
||||
elevations = []
|
||||
azimuths = []
|
||||
for i in range(video_frames):
|
||||
elevations.append(elevation)
|
||||
azimuths.append(azimuth)
|
||||
azimuth += azimuth_increment
|
||||
|
||||
positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]]
|
||||
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t), "elevation": elevations, "azimuth": azimuths}]]
|
||||
latent = torch.zeros([video_frames, 4, height // 8, width // 8])
|
||||
return io.NodeOutput(positive, negative, {"samples":latent})
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
StableZero123_Conditioning,
|
||||
StableZero123_Conditioning_Batched,
|
||||
SV3D_Conditioning,
|
||||
]
|
380
comfy_extras/v3/nodes_string.py
Normal file
380
comfy_extras/v3/nodes_string.py
Normal file
@ -0,0 +1,380 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class StringConcatenate(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StringConcatenate_V3",
|
||||
display_name="Concatenate _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string_a", multiline=True),
|
||||
io.String.Input("string_b", multiline=True),
|
||||
io.String.Input("delimiter", multiline=False, default="")
|
||||
],
|
||||
outputs=[
|
||||
io.String.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string_a, string_b, delimiter):
|
||||
return io.NodeOutput(delimiter.join((string_a, string_b)))
|
||||
|
||||
|
||||
class StringSubstring(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StringSubstring_V3",
|
||||
display_name="Substring _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True),
|
||||
io.Int.Input("start"),
|
||||
io.Int.Input("end")
|
||||
],
|
||||
outputs=[
|
||||
io.String.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string, start, end):
|
||||
return io.NodeOutput(string[start:end])
|
||||
|
||||
|
||||
class StringLength(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StringLength_V3",
|
||||
display_name="Length _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True)
|
||||
],
|
||||
outputs=[
|
||||
io.Int.Output(display_name="length")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string):
|
||||
return io.NodeOutput(len(string))
|
||||
|
||||
|
||||
class CaseConverter(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CaseConverter_V3",
|
||||
display_name="Case Converter _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True),
|
||||
io.Combo.Input("mode", options=["UPPERCASE", "lowercase", "Capitalize", "Title Case"])
|
||||
],
|
||||
outputs=[
|
||||
io.String.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string, mode):
|
||||
if mode == "UPPERCASE":
|
||||
result = string.upper()
|
||||
elif mode == "lowercase":
|
||||
result = string.lower()
|
||||
elif mode == "Capitalize":
|
||||
result = string.capitalize()
|
||||
elif mode == "Title Case":
|
||||
result = string.title()
|
||||
else:
|
||||
result = string
|
||||
|
||||
return io.NodeOutput(result)
|
||||
|
||||
|
||||
class StringTrim(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StringTrim_V3",
|
||||
display_name="Trim _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True),
|
||||
io.Combo.Input("mode", options=["Both", "Left", "Right"])
|
||||
],
|
||||
outputs=[
|
||||
io.String.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string, mode):
|
||||
if mode == "Both":
|
||||
result = string.strip()
|
||||
elif mode == "Left":
|
||||
result = string.lstrip()
|
||||
elif mode == "Right":
|
||||
result = string.rstrip()
|
||||
else:
|
||||
result = string
|
||||
|
||||
return io.NodeOutput(result)
|
||||
|
||||
|
||||
class StringReplace(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StringReplace_V3",
|
||||
display_name="Replace _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True),
|
||||
io.String.Input("find", multiline=True),
|
||||
io.String.Input("replace", multiline=True)
|
||||
],
|
||||
outputs=[
|
||||
io.String.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string, find, replace):
|
||||
return io.NodeOutput(string.replace(find, replace))
|
||||
|
||||
|
||||
class StringContains(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StringContains_V3",
|
||||
display_name="Contains _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True),
|
||||
io.String.Input("substring", multiline=True),
|
||||
io.Boolean.Input("case_sensitive", default=True)
|
||||
],
|
||||
outputs=[
|
||||
io.Boolean.Output(display_name="contains")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string, substring, case_sensitive):
|
||||
if case_sensitive:
|
||||
contains = substring in string
|
||||
else:
|
||||
contains = substring.lower() in string.lower()
|
||||
|
||||
return io.NodeOutput(contains)
|
||||
|
||||
|
||||
class StringCompare(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StringCompare_V3",
|
||||
display_name="Compare _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string_a", multiline=True),
|
||||
io.String.Input("string_b", multiline=True),
|
||||
io.Combo.Input("mode", options=["Starts With", "Ends With", "Equal"]),
|
||||
io.Boolean.Input("case_sensitive", default=True)
|
||||
],
|
||||
outputs=[
|
||||
io.Boolean.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string_a, string_b, mode, case_sensitive):
|
||||
if case_sensitive:
|
||||
a = string_a
|
||||
b = string_b
|
||||
else:
|
||||
a = string_a.lower()
|
||||
b = string_b.lower()
|
||||
|
||||
if mode == "Equal":
|
||||
return io.NodeOutput(a == b)
|
||||
elif mode == "Starts With":
|
||||
return io.NodeOutput(a.startswith(b))
|
||||
elif mode == "Ends With":
|
||||
return io.NodeOutput(a.endswith(b))
|
||||
|
||||
|
||||
class RegexMatch(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="RegexMatch_V3",
|
||||
display_name="Regex Match _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True),
|
||||
io.String.Input("regex_pattern", multiline=True),
|
||||
io.Boolean.Input("case_insensitive", default=True),
|
||||
io.Boolean.Input("multiline", default=False),
|
||||
io.Boolean.Input("dotall", default=False)
|
||||
],
|
||||
outputs=[
|
||||
io.Boolean.Output(display_name="matches")
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string, regex_pattern, case_insensitive, multiline, dotall):
|
||||
flags = 0
|
||||
|
||||
if case_insensitive:
|
||||
flags |= re.IGNORECASE
|
||||
if multiline:
|
||||
flags |= re.MULTILINE
|
||||
if dotall:
|
||||
flags |= re.DOTALL
|
||||
|
||||
try:
|
||||
match = re.search(regex_pattern, string, flags)
|
||||
result = match is not None
|
||||
|
||||
except re.error:
|
||||
result = False
|
||||
|
||||
return io.NodeOutput(result)
|
||||
|
||||
|
||||
class RegexExtract(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="RegexExtract_V3",
|
||||
display_name="Regex Extract _V3",
|
||||
category="utils/string",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True),
|
||||
io.String.Input("regex_pattern", multiline=True),
|
||||
io.Combo.Input("mode", options=["First Match", "All Matches", "First Group", "All Groups"]),
|
||||
io.Boolean.Input("case_insensitive", default=True),
|
||||
io.Boolean.Input("multiline", default=False),
|
||||
io.Boolean.Input("dotall", default=False),
|
||||
io.Int.Input("group_index", default=1, min=0, max=100)
|
||||
],
|
||||
outputs=[
|
||||
io.String.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string, regex_pattern, mode, case_insensitive, multiline, dotall, group_index):
|
||||
join_delimiter = "\n"
|
||||
|
||||
flags = 0
|
||||
if case_insensitive:
|
||||
flags |= re.IGNORECASE
|
||||
if multiline:
|
||||
flags |= re.MULTILINE
|
||||
if dotall:
|
||||
flags |= re.DOTALL
|
||||
|
||||
try:
|
||||
if mode == "First Match":
|
||||
match = re.search(regex_pattern, string, flags)
|
||||
if match:
|
||||
result = match.group(0)
|
||||
else:
|
||||
result = ""
|
||||
|
||||
elif mode == "All Matches":
|
||||
matches = re.findall(regex_pattern, string, flags)
|
||||
if matches:
|
||||
if isinstance(matches[0], tuple):
|
||||
result = join_delimiter.join([m[0] for m in matches])
|
||||
else:
|
||||
result = join_delimiter.join(matches)
|
||||
else:
|
||||
result = ""
|
||||
|
||||
elif mode == "First Group":
|
||||
match = re.search(regex_pattern, string, flags)
|
||||
if match and len(match.groups()) >= group_index:
|
||||
result = match.group(group_index)
|
||||
else:
|
||||
result = ""
|
||||
|
||||
elif mode == "All Groups":
|
||||
matches = re.finditer(regex_pattern, string, flags)
|
||||
results = []
|
||||
for match in matches:
|
||||
if match.groups() and len(match.groups()) >= group_index:
|
||||
results.append(match.group(group_index))
|
||||
result = join_delimiter.join(results)
|
||||
else:
|
||||
result = ""
|
||||
|
||||
except re.error:
|
||||
result = ""
|
||||
|
||||
return io.NodeOutput(result)
|
||||
|
||||
|
||||
class RegexReplace(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="RegexReplace_V3",
|
||||
display_name="Regex Replace _V3",
|
||||
category="utils/string",
|
||||
description="Find and replace text using regex patterns.",
|
||||
inputs=[
|
||||
io.String.Input("string", multiline=True),
|
||||
io.String.Input("regex_pattern", multiline=True),
|
||||
io.String.Input("replace", multiline=True),
|
||||
io.Boolean.Input("case_insensitive", default=True, optional=True),
|
||||
io.Boolean.Input("multiline", default=False, optional=True),
|
||||
io.Boolean.Input("dotall", default=False, optional=True, tooltip="When enabled, the dot (.) character will match any character including newline characters. When disabled, dots won't match newlines."),
|
||||
io.Int.Input("count", default=0, min=0, max=100, optional=True, tooltip="Maximum number of replacements to make. Set to 0 to replace all occurrences (default). Set to 1 to replace only the first match, 2 for the first two matches, etc.")
|
||||
],
|
||||
outputs=[
|
||||
io.String.Output()
|
||||
]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, string, regex_pattern, replace, case_insensitive=True, multiline=False, dotall=False, count=0):
|
||||
flags = 0
|
||||
|
||||
if case_insensitive:
|
||||
flags |= re.IGNORECASE
|
||||
if multiline:
|
||||
flags |= re.MULTILINE
|
||||
if dotall:
|
||||
flags |= re.DOTALL
|
||||
result = re.sub(regex_pattern, replace, string, count=count, flags=flags)
|
||||
return io.NodeOutput(result)
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CaseConverter,
|
||||
RegexExtract,
|
||||
RegexMatch,
|
||||
RegexReplace,
|
||||
StringCompare,
|
||||
StringConcatenate,
|
||||
StringContains,
|
||||
StringLength,
|
||||
StringReplace,
|
||||
StringSubstring,
|
||||
StringTrim,
|
||||
]
|
@ -65,6 +65,6 @@ class TCFG(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
TCFG,
|
||||
]
|
||||
|
@ -185,6 +185,6 @@ class TomePatchModel(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
TomePatchModel,
|
||||
]
|
||||
|
@ -27,6 +27,6 @@ class TorchCompileModel(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
TorchCompileModel,
|
||||
]
|
||||
|
@ -162,57 +162,6 @@ def load_and_process_images(image_files, input_dir, resize_method="None", w=None
|
||||
return torch.cat(output_images, dim=0)
|
||||
|
||||
|
||||
def draw_loss_graph(loss_map, steps):
|
||||
width, height = 500, 300
|
||||
img = Image.new("RGB", (width, height), "white")
|
||||
draw = ImageDraw.Draw(img)
|
||||
|
||||
min_loss, max_loss = min(loss_map.values()), max(loss_map.values())
|
||||
scaled_loss = [(l_v - min_loss) / (max_loss - min_loss) for l_v in loss_map.values()]
|
||||
|
||||
prev_point = (0, height - int(scaled_loss[0] * height))
|
||||
for i, l_v in enumerate(scaled_loss[1:], start=1):
|
||||
x = int(i / (steps - 1) * width)
|
||||
y = height - int(l_v * height)
|
||||
draw.line([prev_point, (x, y)], fill="blue", width=2)
|
||||
prev_point = (x, y)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def find_all_highest_child_module_with_forward(model: torch.nn.Module, result = None, name = None):
|
||||
if result is None:
|
||||
result = []
|
||||
elif hasattr(model, "forward") and not isinstance(model, (torch.nn.ModuleList, torch.nn.Sequential, torch.nn.ModuleDict)):
|
||||
result.append(model)
|
||||
logging.debug(f"Found module with forward: {name} ({model.__class__.__name__})")
|
||||
return result
|
||||
name = name or "root"
|
||||
for next_name, child in model.named_children():
|
||||
find_all_highest_child_module_with_forward(child, result, f"{name}.{next_name}")
|
||||
return result
|
||||
|
||||
|
||||
def patch(m):
|
||||
if not hasattr(m, "forward"):
|
||||
return
|
||||
org_forward = m.forward
|
||||
def fwd(args, kwargs):
|
||||
return org_forward(*args, **kwargs)
|
||||
def checkpointing_fwd(*args, **kwargs):
|
||||
return torch.utils.checkpoint.checkpoint(
|
||||
fwd, args, kwargs, use_reentrant=False
|
||||
)
|
||||
m.org_forward = org_forward
|
||||
m.forward = checkpointing_fwd
|
||||
|
||||
|
||||
def unpatch(m):
|
||||
if hasattr(m, "org_forward"):
|
||||
m.forward = m.org_forward
|
||||
del m.org_forward
|
||||
|
||||
|
||||
class LoadImageSetFromFolderNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -328,126 +277,55 @@ class LoadImageTextSetFromFolderNode(io.ComfyNode):
|
||||
return io.NodeOutput(output_tensor, conditions)
|
||||
|
||||
|
||||
class LoraModelLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LoraModelLoader_V3",
|
||||
display_name="Load LoRA Model _V3",
|
||||
category="loaders",
|
||||
description="Load Trained LoRA weights from Train LoRA node.",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Model.Input("model", tooltip="The diffusion model the LoRA will be applied to."),
|
||||
io.LoraModel.Input("lora", tooltip="The LoRA model to apply to the diffusion model."),
|
||||
io.Float.Input("strength_model", default=1.0, min=-100.0, max=100.0, step=0.01, tooltip="How strongly to modify the diffusion model. This value can be negative."),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(tooltip="The modified diffusion model."),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, lora, strength_model):
|
||||
if strength_model == 0:
|
||||
return io.NodeOutput(model)
|
||||
|
||||
model_lora, _ = comfy.sd.load_lora_for_models(model, None, lora, strength_model, 0)
|
||||
return io.NodeOutput(model_lora)
|
||||
|
||||
|
||||
class LossGraphNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LossGraphNode_V3",
|
||||
display_name="Plot Loss Graph _V3",
|
||||
category="training",
|
||||
description="Plots the loss graph and saves it to the output directory.",
|
||||
is_experimental=True,
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.LossMap.Input("loss"), # TODO: original V1 node has also `default={}` parameter
|
||||
io.String.Input("filename_prefix", default="loss_graph"),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, loss, filename_prefix):
|
||||
loss_values = loss["loss"]
|
||||
width, height = 800, 480
|
||||
margin = 40
|
||||
|
||||
img = Image.new(
|
||||
"RGB", (width + margin, height + margin), "white"
|
||||
) # Extend canvas
|
||||
def draw_loss_graph(loss_map, steps):
|
||||
width, height = 500, 300
|
||||
img = Image.new("RGB", (width, height), "white")
|
||||
draw = ImageDraw.Draw(img)
|
||||
|
||||
min_loss, max_loss = min(loss_values), max(loss_values)
|
||||
scaled_loss = [(l_v - min_loss) / (max_loss - min_loss) for l_v in loss_values]
|
||||
min_loss, max_loss = min(loss_map.values()), max(loss_map.values())
|
||||
scaled_loss = [(l_v - min_loss) / (max_loss - min_loss) for l_v in loss_map.values()]
|
||||
|
||||
steps = len(loss_values)
|
||||
|
||||
prev_point = (margin, height - int(scaled_loss[0] * height))
|
||||
prev_point = (0, height - int(scaled_loss[0] * height))
|
||||
for i, l_v in enumerate(scaled_loss[1:], start=1):
|
||||
x = margin + int(i / steps * width) # Scale X properly
|
||||
x = int(i / (steps - 1) * width)
|
||||
y = height - int(l_v * height)
|
||||
draw.line([prev_point, (x, y)], fill="blue", width=2)
|
||||
prev_point = (x, y)
|
||||
|
||||
draw.line([(margin, 0), (margin, height)], fill="black", width=2) # Y-axis
|
||||
draw.line(
|
||||
[(margin, height), (width + margin, height)], fill="black", width=2
|
||||
) # X-axis
|
||||
return img
|
||||
|
||||
try:
|
||||
font = ImageFont.truetype("arial.ttf", 12)
|
||||
except IOError:
|
||||
font = ImageFont.load_default()
|
||||
|
||||
# Add axis labels
|
||||
draw.text((5, height // 2), "Loss", font=font, fill="black")
|
||||
draw.text((width // 2, height + 10), "Steps", font=font, fill="black")
|
||||
def find_all_highest_child_module_with_forward(model: torch.nn.Module, result = None, name = None):
|
||||
if result is None:
|
||||
result = []
|
||||
elif hasattr(model, "forward") and not isinstance(model, (torch.nn.ModuleList, torch.nn.Sequential, torch.nn.ModuleDict)):
|
||||
result.append(model)
|
||||
logging.debug(f"Found module with forward: {name} ({model.__class__.__name__})")
|
||||
return result
|
||||
name = name or "root"
|
||||
for next_name, child in model.named_children():
|
||||
find_all_highest_child_module_with_forward(child, result, f"{name}.{next_name}")
|
||||
return result
|
||||
|
||||
# Add min/max loss values
|
||||
draw.text((margin - 30, 0), f"{max_loss:.2f}", font=font, fill="black")
|
||||
draw.text(
|
||||
(margin - 30, height - 10), f"{min_loss:.2f}", font=font, fill="black"
|
||||
|
||||
def patch(m):
|
||||
if not hasattr(m, "forward"):
|
||||
return
|
||||
org_forward = m.forward
|
||||
def fwd(args, kwargs):
|
||||
return org_forward(*args, **kwargs)
|
||||
def checkpointing_fwd(*args, **kwargs):
|
||||
return torch.utils.checkpoint.checkpoint(
|
||||
fwd, args, kwargs, use_reentrant=False
|
||||
)
|
||||
return io.NodeOutput(ui=ui.PreviewImage(img, cls=cls))
|
||||
m.org_forward = org_forward
|
||||
m.forward = checkpointing_fwd
|
||||
|
||||
|
||||
class SaveLoRA(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveLoRA_V3",
|
||||
display_name="Save LoRA Weights _V3",
|
||||
category="loaders",
|
||||
is_experimental=True,
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.LoraModel.Input("lora", tooltip="The LoRA model to save. Do not use the model with LoRA layers."),
|
||||
io.String.Input("prefix", default="loras/ComfyUI_trained_lora", tooltip="The prefix to use for the saved LoRA file."),
|
||||
io.Int.Input("steps", tooltip="Optional: The number of steps to LoRA has been trained for, used to name the saved file.", optional=True),
|
||||
],
|
||||
outputs=[],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, lora, prefix, steps=None):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
prefix, folder_paths.get_output_directory()
|
||||
)
|
||||
if steps is None:
|
||||
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||||
else:
|
||||
output_checkpoint = f"{filename}_{steps}_steps_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
safetensors.torch.save_file(lora, output_checkpoint)
|
||||
return io.NodeOutput()
|
||||
def unpatch(m):
|
||||
if hasattr(m, "org_forward"):
|
||||
m.forward = m.org_forward
|
||||
del m.org_forward
|
||||
|
||||
|
||||
class TrainLoraNode(io.ComfyNode):
|
||||
@ -656,7 +534,129 @@ class TrainLoraNode(io.ComfyNode):
|
||||
return io.NodeOutput(mp, lora_sd, loss_map, steps + existing_steps)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
class LoraModelLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LoraModelLoader_V3",
|
||||
display_name="Load LoRA Model _V3",
|
||||
category="loaders",
|
||||
description="Load Trained LoRA weights from Train LoRA node.",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Model.Input("model", tooltip="The diffusion model the LoRA will be applied to."),
|
||||
io.LoraModel.Input("lora", tooltip="The LoRA model to apply to the diffusion model."),
|
||||
io.Float.Input("strength_model", default=1.0, min=-100.0, max=100.0, step=0.01, tooltip="How strongly to modify the diffusion model. This value can be negative."),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(tooltip="The modified diffusion model."),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, lora, strength_model):
|
||||
if strength_model == 0:
|
||||
return io.NodeOutput(model)
|
||||
|
||||
model_lora, _ = comfy.sd.load_lora_for_models(model, None, lora, strength_model, 0)
|
||||
return io.NodeOutput(model_lora)
|
||||
|
||||
|
||||
class SaveLoRA(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveLoRA_V3",
|
||||
display_name="Save LoRA Weights _V3",
|
||||
category="loaders",
|
||||
is_experimental=True,
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.LoraModel.Input("lora", tooltip="The LoRA model to save. Do not use the model with LoRA layers."),
|
||||
io.String.Input("prefix", default="loras/ComfyUI_trained_lora", tooltip="The prefix to use for the saved LoRA file."),
|
||||
io.Int.Input("steps", tooltip="Optional: The number of steps to LoRA has been trained for, used to name the saved file.", optional=True),
|
||||
],
|
||||
outputs=[],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, lora, prefix, steps=None):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
prefix, folder_paths.get_output_directory()
|
||||
)
|
||||
if steps is None:
|
||||
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||||
else:
|
||||
output_checkpoint = f"{filename}_{steps}_steps_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
safetensors.torch.save_file(lora, output_checkpoint)
|
||||
return io.NodeOutput()
|
||||
|
||||
|
||||
class LossGraphNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LossGraphNode_V3",
|
||||
display_name="Plot Loss Graph _V3",
|
||||
category="training",
|
||||
description="Plots the loss graph and saves it to the output directory.",
|
||||
is_experimental=True,
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
io.LossMap.Input("loss"), # TODO: original V1 node has also `default={}` parameter
|
||||
io.String.Input("filename_prefix", default="loss_graph"),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, loss, filename_prefix):
|
||||
loss_values = loss["loss"]
|
||||
width, height = 800, 480
|
||||
margin = 40
|
||||
|
||||
img = Image.new(
|
||||
"RGB", (width + margin, height + margin), "white"
|
||||
) # Extend canvas
|
||||
draw = ImageDraw.Draw(img)
|
||||
|
||||
min_loss, max_loss = min(loss_values), max(loss_values)
|
||||
scaled_loss = [(l_v - min_loss) / (max_loss - min_loss) for l_v in loss_values]
|
||||
|
||||
steps = len(loss_values)
|
||||
|
||||
prev_point = (margin, height - int(scaled_loss[0] * height))
|
||||
for i, l_v in enumerate(scaled_loss[1:], start=1):
|
||||
x = margin + int(i / steps * width) # Scale X properly
|
||||
y = height - int(l_v * height)
|
||||
draw.line([prev_point, (x, y)], fill="blue", width=2)
|
||||
prev_point = (x, y)
|
||||
|
||||
draw.line([(margin, 0), (margin, height)], fill="black", width=2) # Y-axis
|
||||
draw.line(
|
||||
[(margin, height), (width + margin, height)], fill="black", width=2
|
||||
) # X-axis
|
||||
|
||||
try:
|
||||
font = ImageFont.truetype("arial.ttf", 12)
|
||||
except IOError:
|
||||
font = ImageFont.load_default()
|
||||
|
||||
# Add axis labels
|
||||
draw.text((5, height // 2), "Loss", font=font, fill="black")
|
||||
draw.text((width // 2, height + 10), "Steps", font=font, fill="black")
|
||||
|
||||
# Add min/max loss values
|
||||
draw.text((margin - 30, 0), f"{max_loss:.2f}", font=font, fill="black")
|
||||
draw.text(
|
||||
(margin - 30, height - 10), f"{min_loss:.2f}", font=font, fill="black"
|
||||
)
|
||||
return io.NodeOutput(ui=ui.PreviewImage(img, cls=cls))
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
LoadImageSetFromFolderNode,
|
||||
LoadImageTextSetFromFolderNode,
|
||||
LoraModelLoader,
|
||||
|
@ -19,6 +19,35 @@ except Exception:
|
||||
pass
|
||||
|
||||
|
||||
class UpscaleModelLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="UpscaleModelLoader_V3",
|
||||
display_name="Load Upscale Model _V3",
|
||||
category="loaders",
|
||||
inputs=[
|
||||
io.Combo.Input("model_name", options=folder_paths.get_filename_list("upscale_models")),
|
||||
],
|
||||
outputs=[
|
||||
io.UpscaleModel.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model_name):
|
||||
model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name)
|
||||
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
|
||||
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""})
|
||||
out = ModelLoader().load_from_state_dict(sd).eval()
|
||||
|
||||
if not isinstance(out, ImageModelDescriptor):
|
||||
raise Exception("Upscale model must be a single-image model.")
|
||||
|
||||
return io.NodeOutput(out)
|
||||
|
||||
|
||||
class ImageUpscaleWithModel(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -71,36 +100,7 @@ class ImageUpscaleWithModel(io.ComfyNode):
|
||||
return io.NodeOutput(s)
|
||||
|
||||
|
||||
class UpscaleModelLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="UpscaleModelLoader_V3",
|
||||
display_name="Load Upscale Model _V3",
|
||||
category="loaders",
|
||||
inputs=[
|
||||
io.Combo.Input("model_name", options=folder_paths.get_filename_list("upscale_models")),
|
||||
],
|
||||
outputs=[
|
||||
io.UpscaleModel.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model_name):
|
||||
model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name)
|
||||
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
|
||||
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""})
|
||||
out = ModelLoader().load_from_state_dict(sd).eval()
|
||||
|
||||
if not isinstance(out, ImageModelDescriptor):
|
||||
raise Exception("Upscale model must be a single-image model.")
|
||||
|
||||
return io.NodeOutput(out)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
ImageUpscaleWithModel,
|
||||
UpscaleModelLoader,
|
||||
]
|
||||
|
@ -15,6 +15,108 @@ from comfy_api.latest import io, ui
|
||||
from comfy_api.util import VideoCodec, VideoComponents, VideoContainer
|
||||
|
||||
|
||||
class SaveWEBM(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveWEBM_V3",
|
||||
category="image/video",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Image.Input("images"),
|
||||
io.String.Input("filename_prefix", default="ComfyUI"),
|
||||
io.Combo.Input("codec", options=["vp9", "av1"]),
|
||||
io.Float.Input("fps", default=24.0, min=0.01, max=1000.0, step=0.01),
|
||||
io.Float.Input("crf", default=32.0, min=0, max=63.0, step=1, tooltip="Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, images, codec, fps, filename_prefix, crf):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
|
||||
)
|
||||
|
||||
file = f"{filename}_{counter:05}_.webm"
|
||||
container = av.open(os.path.join(full_output_folder, file), mode="w")
|
||||
|
||||
if cls.hidden.prompt is not None:
|
||||
container.metadata["prompt"] = json.dumps(cls.hidden.prompt)
|
||||
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
container.metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
codec_map = {"vp9": "libvpx-vp9", "av1": "libsvtav1"}
|
||||
stream = container.add_stream(codec_map[codec], rate=Fraction(round(fps * 1000), 1000))
|
||||
stream.width = images.shape[-2]
|
||||
stream.height = images.shape[-3]
|
||||
stream.pix_fmt = "yuv420p10le" if codec == "av1" else "yuv420p"
|
||||
stream.bit_rate = 0
|
||||
stream.options = {'crf': str(crf)}
|
||||
if codec == "av1":
|
||||
stream.options["preset"] = "6"
|
||||
|
||||
for frame in images:
|
||||
frame = av.VideoFrame.from_ndarray(torch.clamp(frame[..., :3] * 255, min=0, max=255).to(device=torch.device("cpu"), dtype=torch.uint8).numpy(), format="rgb24")
|
||||
for packet in stream.encode(frame):
|
||||
container.mux(packet)
|
||||
container.mux(stream.encode())
|
||||
container.close()
|
||||
|
||||
return io.NodeOutput(ui=ui.PreviewVideo([ui.SavedResult(file, subfolder, io.FolderType.output)]))
|
||||
|
||||
|
||||
class SaveVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveVideo_V3",
|
||||
display_name="Save Video _V3",
|
||||
category="image/video",
|
||||
description="Saves the input images to your ComfyUI output directory.",
|
||||
inputs=[
|
||||
io.Video.Input("video", tooltip="The video to save."),
|
||||
io.String.Input("filename_prefix", default="video/ComfyUI", tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."),
|
||||
io.Combo.Input("format", options=VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."),
|
||||
io.Combo.Input("codec", options=VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, video: VideoInput, filename_prefix, format, codec):
|
||||
width, height = video.get_dimensions()
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix,
|
||||
folder_paths.get_output_directory(),
|
||||
width,
|
||||
height
|
||||
)
|
||||
saved_metadata = None
|
||||
if not args.disable_metadata:
|
||||
metadata = {}
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
metadata.update(cls.hidden.extra_pnginfo)
|
||||
if cls.hidden.prompt is not None:
|
||||
metadata["prompt"] = cls.hidden.prompt
|
||||
if len(metadata) > 0:
|
||||
saved_metadata = metadata
|
||||
file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}"
|
||||
video.save_to(
|
||||
os.path.join(full_output_folder, file),
|
||||
format=format,
|
||||
codec=codec,
|
||||
metadata=saved_metadata
|
||||
)
|
||||
return io.NodeOutput(ui=ui.PreviewVideo([ui.SavedResult(file, subfolder, io.FolderType.output)]))
|
||||
|
||||
|
||||
class CreateVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -35,13 +137,9 @@ class CreateVideo(io.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def execute(cls, images: ImageInput, fps: float, audio: AudioInput = None):
|
||||
return io.NodeOutput(VideoFromComponents(
|
||||
VideoComponents(
|
||||
images=images,
|
||||
audio=audio,
|
||||
frame_rate=Fraction(fps),
|
||||
return io.NodeOutput(
|
||||
VideoFromComponents(VideoComponents(images=images, audio=audio, frame_rate=Fraction(fps)))
|
||||
)
|
||||
))
|
||||
|
||||
|
||||
class GetVideoComponents(io.ComfyNode):
|
||||
@ -105,106 +203,10 @@ class LoadVideo(io.ComfyNode):
|
||||
return True
|
||||
|
||||
|
||||
class SaveVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveVideo_V3",
|
||||
display_name="Save Video _V3",
|
||||
category="image/video",
|
||||
description="Saves the input images to your ComfyUI output directory.",
|
||||
inputs=[
|
||||
io.Video.Input("video", tooltip="The video to save."),
|
||||
io.String.Input("filename_prefix", default="video/ComfyUI", tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."),
|
||||
io.Combo.Input("format", options=VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."),
|
||||
io.Combo.Input("codec", options=VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, video: VideoInput, filename_prefix, format, codec):
|
||||
width, height = video.get_dimensions()
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix,
|
||||
folder_paths.get_output_directory(),
|
||||
width,
|
||||
height
|
||||
)
|
||||
saved_metadata = None
|
||||
if not args.disable_metadata:
|
||||
metadata = {}
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
metadata.update(cls.hidden.extra_pnginfo)
|
||||
if cls.hidden.prompt is not None:
|
||||
metadata["prompt"] = cls.hidden.prompt
|
||||
if len(metadata) > 0:
|
||||
saved_metadata = metadata
|
||||
file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}"
|
||||
video.save_to(
|
||||
os.path.join(full_output_folder, file),
|
||||
format=format,
|
||||
codec=codec,
|
||||
metadata=saved_metadata
|
||||
)
|
||||
return io.NodeOutput(ui=ui.PreviewVideo([ui.SavedResult(file, subfolder, io.FolderType.output)]))
|
||||
|
||||
|
||||
class SaveWEBM(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveWEBM_V3",
|
||||
category="image/video",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Image.Input("images"),
|
||||
io.String.Input("filename_prefix", default="ComfyUI"),
|
||||
io.Combo.Input("codec", options=["vp9", "av1"]),
|
||||
io.Float.Input("fps", default=24.0, min=0.01, max=1000.0, step=0.01),
|
||||
io.Float.Input("crf", default=32.0, min=0, max=63.0, step=1, tooltip="Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, images, codec, fps, filename_prefix, crf):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
|
||||
)
|
||||
|
||||
file = f"{filename}_{counter:05}_.webm"
|
||||
container = av.open(os.path.join(full_output_folder, file), mode="w")
|
||||
|
||||
if cls.hidden.prompt is not None:
|
||||
container.metadata["prompt"] = json.dumps(cls.hidden.prompt)
|
||||
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
container.metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
codec_map = {"vp9": "libvpx-vp9", "av1": "libsvtav1"}
|
||||
stream = container.add_stream(codec_map[codec], rate=Fraction(round(fps * 1000), 1000))
|
||||
stream.width = images.shape[-2]
|
||||
stream.height = images.shape[-3]
|
||||
stream.pix_fmt = "yuv420p10le" if codec == "av1" else "yuv420p"
|
||||
stream.bit_rate = 0
|
||||
stream.options = {'crf': str(crf)}
|
||||
if codec == "av1":
|
||||
stream.options["preset"] = "6"
|
||||
|
||||
for frame in images:
|
||||
frame = av.VideoFrame.from_ndarray(torch.clamp(frame[..., :3] * 255, min=0, max=255).to(device=torch.device("cpu"), dtype=torch.uint8).numpy(), format="rgb24")
|
||||
for packet in stream.encode(frame):
|
||||
container.mux(packet)
|
||||
container.mux(stream.encode())
|
||||
container.close()
|
||||
|
||||
return io.NodeOutput(ui=ui.PreviewVideo([ui.SavedResult(file, subfolder, io.FolderType.output)]))
|
||||
|
||||
|
||||
NODES_LIST = [CreateVideo, GetVideoComponents, LoadVideo, SaveVideo, SaveWEBM]
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
CreateVideo,
|
||||
GetVideoComponents,
|
||||
LoadVideo,
|
||||
SaveVideo,
|
||||
SaveWEBM,
|
||||
]
|
||||
|
@ -11,40 +11,6 @@ import nodes
|
||||
from comfy_api.latest import io
|
||||
|
||||
|
||||
class ConditioningSetAreaPercentageVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ConditioningSetAreaPercentageVideo_V3",
|
||||
category="conditioning",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
io.Float.Input("width", default=1.0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("height", default=1.0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("temporal", default=1.0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("x", default=0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("y", default=0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("z", default=0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("strength", default=1.0, min=0.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, conditioning, width, height, temporal, x, y, z, strength):
|
||||
c = node_helpers.conditioning_set_values(
|
||||
conditioning,
|
||||
{
|
||||
"area": ("percentage", temporal, height, width, z, y, x),
|
||||
"strength": strength,
|
||||
"set_area_to_bounds": False
|
||||
,}
|
||||
)
|
||||
return io.NodeOutput(c)
|
||||
|
||||
|
||||
class ImageOnlyCheckpointLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -75,37 +41,6 @@ class ImageOnlyCheckpointLoader(io.ComfyNode):
|
||||
return io.NodeOutput(out[0], out[3], out[2])
|
||||
|
||||
|
||||
class ImageOnlyCheckpointSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageOnlyCheckpointSave_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.ClipVision.Input("clip_vision"),
|
||||
io.Vae.Input("vae"),
|
||||
io.String.Input("filename_prefix", default="checkpoints/ComfyUI"),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, clip_vision, vae, filename_prefix):
|
||||
output_dir = folder_paths.get_output_directory()
|
||||
comfy_extras.nodes_model_merging.save_checkpoint(
|
||||
model,
|
||||
clip_vision=clip_vision,
|
||||
vae=vae,
|
||||
filename_prefix=filename_prefix,
|
||||
output_dir=output_dir,
|
||||
prompt=cls.hidden.prompt,
|
||||
extra_pnginfo=cls.hidden.extra_pnginfo,
|
||||
)
|
||||
return io.NodeOutput()
|
||||
|
||||
|
||||
class SVD_img2vid_Conditioning(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -222,7 +157,72 @@ class VideoTriangleCFGGuidance(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
class ImageOnlyCheckpointSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageOnlyCheckpointSave_V3",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.ClipVision.Input("clip_vision"),
|
||||
io.Vae.Input("vae"),
|
||||
io.String.Input("filename_prefix", default="checkpoints/ComfyUI"),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, clip_vision, vae, filename_prefix):
|
||||
output_dir = folder_paths.get_output_directory()
|
||||
comfy_extras.nodes_model_merging.save_checkpoint(
|
||||
model,
|
||||
clip_vision=clip_vision,
|
||||
vae=vae,
|
||||
filename_prefix=filename_prefix,
|
||||
output_dir=output_dir,
|
||||
prompt=cls.hidden.prompt,
|
||||
extra_pnginfo=cls.hidden.extra_pnginfo,
|
||||
)
|
||||
return io.NodeOutput()
|
||||
|
||||
|
||||
class ConditioningSetAreaPercentageVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ConditioningSetAreaPercentageVideo_V3",
|
||||
category="conditioning",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
io.Float.Input("width", default=1.0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("height", default=1.0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("temporal", default=1.0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("x", default=0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("y", default=0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("z", default=0, min=0, max=1.0, step=0.01),
|
||||
io.Float.Input("strength", default=1.0, min=0.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, conditioning, width, height, temporal, x, y, z, strength):
|
||||
c = node_helpers.conditioning_set_values(
|
||||
conditioning,
|
||||
{
|
||||
"area": ("percentage", temporal, height, width, z, y, x),
|
||||
"strength": strength,
|
||||
"set_area_to_bounds": False
|
||||
,}
|
||||
)
|
||||
return io.NodeOutput(c)
|
||||
|
||||
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
ConditioningSetAreaPercentageVideo,
|
||||
ImageOnlyCheckpointLoader,
|
||||
ImageOnlyCheckpointSave,
|
||||
|
@ -425,7 +425,7 @@ class WanVaceToVideo(io.ComfyNode):
|
||||
return io.NodeOutput(positive, negative, out_latent, trim_latent)
|
||||
|
||||
|
||||
NODES_LIST = [
|
||||
NODES_LIST: list[type[io.ComfyNode]] = [
|
||||
TrimVideoLatent,
|
||||
WanCameraImageToVideo,
|
||||
WanFirstLastFrameToVideo,
|
||||
|
8
nodes.py
8
nodes.py
@ -2316,6 +2316,7 @@ async def init_builtin_extra_nodes():
|
||||
"v3/nodes_cond.py",
|
||||
"v3/nodes_controlnet.py",
|
||||
"v3/nodes_cosmos.py",
|
||||
"v3/nodes_custom_sampler.py",
|
||||
"v3/nodes_differential_diffusion.py",
|
||||
"v3/nodes_edit_model.py",
|
||||
"v3/nodes_flux.py",
|
||||
@ -2323,7 +2324,9 @@ async def init_builtin_extra_nodes():
|
||||
"v3/nodes_fresca.py",
|
||||
"v3/nodes_gits.py",
|
||||
"v3/nodes_hidream.py",
|
||||
# "v3/nodes_hooks.py",
|
||||
"v3/nodes_hunyuan.py",
|
||||
"v3/nodes_hunyuan3d.py",
|
||||
"v3/nodes_hypernetwork.py",
|
||||
"v3/nodes_hypertile.py",
|
||||
"v3/nodes_images.py",
|
||||
@ -2334,10 +2337,13 @@ async def init_builtin_extra_nodes():
|
||||
"v3/nodes_lotus.py",
|
||||
"v3/nodes_lt.py",
|
||||
"v3/nodes_lumina2.py",
|
||||
"v3/nodes_mahiro.py",
|
||||
"v3/nodes_mask.py",
|
||||
"v3/nodes_mochi.py",
|
||||
"v3/nodes_model_advanced.py",
|
||||
"v3/nodes_model_downscale.py",
|
||||
"v3/nodes_model_merging.py",
|
||||
"v3/nodes_model_merging_model_specific.py",
|
||||
"v3/nodes_morphology.py",
|
||||
"v3/nodes_optimalsteps.py",
|
||||
"v3/nodes_pag.py",
|
||||
@ -2352,7 +2358,9 @@ async def init_builtin_extra_nodes():
|
||||
"v3/nodes_sd3.py",
|
||||
"v3/nodes_sdupscale.py",
|
||||
"v3/nodes_slg.py",
|
||||
"v3/nodes_stable3d.py",
|
||||
"v3/nodes_stable_cascade.py",
|
||||
"v3/nodes_string.py",
|
||||
"v3/nodes_tcfg.py",
|
||||
"v3/nodes_tomesd.py",
|
||||
"v3/nodes_torch_compile.py",
|
||||
|
Loading…
x
Reference in New Issue
Block a user