converted ImageRebatch, LatentRebatch, DifferentialDiffusion

This commit is contained in:
bigcat88 2025-07-18 17:05:40 +03:00
parent 18ed598fa1
commit 2a7793394f
No known key found for this signature in database
GPG Key ID: 1F0BF0EC3CF22721
4 changed files with 201 additions and 1 deletions

View File

@ -0,0 +1,50 @@
from __future__ import annotations
import torch
from comfy_api.v3 import io
class DifferentialDiffusion(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="DifferentialDiffusion_V3",
display_name="Differential Diffusion _V3",
category="_for_testing",
inputs=[
io.Model.Input(id="model"),
],
outputs=[
io.Model.Output(),
],
is_experimental=True,
)
@classmethod
def execute(cls, model):
model = model.clone()
model.set_model_denoise_mask_function(cls.forward)
return io.NodeOutput(model)
@classmethod
def forward(cls, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
model = extra_options["model"]
step_sigmas = extra_options["sigmas"]
sigma_to = model.inner_model.model_sampling.sigma_min
if step_sigmas[-1] > sigma_to:
sigma_to = step_sigmas[-1]
sigma_from = step_sigmas[0]
ts_from = model.inner_model.model_sampling.timestep(sigma_from)
ts_to = model.inner_model.model_sampling.timestep(sigma_to)
current_ts = model.inner_model.model_sampling.timestep(sigma[0])
threshold = (current_ts - ts_to) / (ts_from - ts_to)
return (denoise_mask >= threshold).to(denoise_mask.dtype)
NODES_LIST = [
DifferentialDiffusion,
]

View File

@ -0,0 +1,148 @@
from __future__ import annotations
import torch
from comfy_api.v3 import io
class ImageRebatch(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="RebatchImages_V3",
display_name="Rebatch Images _V3",
category="image/batch",
is_input_list=True,
inputs=[
io.Image.Input("images"),
io.Int.Input("batch_size", default=1, min=1, max=4096),
],
outputs=[
io.Image.Output("IMAGE", display_name="IMAGE", is_output_list=True),
],
)
@classmethod
def execute(cls, images, batch_size):
batch_size = batch_size[0]
output_list = []
all_images = []
for img in images:
for i in range(img.shape[0]):
all_images.append(img[i:i+1])
for i in range(0, len(all_images), batch_size):
output_list.append(torch.cat(all_images[i:i+batch_size], dim=0))
return io.NodeOutput(output_list)
class LatentRebatch(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="RebatchLatents_V3",
display_name="Rebatch Latents _V3",
category="latent/batch",
is_input_list=True,
inputs=[
io.Latent.Input("latents"),
io.Int.Input("batch_size", default=1, min=1, max=4096),
],
outputs=[
io.Latent.Output(is_output_list=True),
],
)
@staticmethod
def get_batch(latents, list_ind, offset):
"""prepare a batch out of the list of latents"""
samples = latents[list_ind]['samples']
shape = samples.shape
mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
if mask.shape[0] < samples.shape[0]:
mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
if 'batch_index' in latents[list_ind]:
batch_inds = latents[list_ind]['batch_index']
else:
batch_inds = [x+offset for x in range(shape[0])]
return samples, mask, batch_inds
@staticmethod
def get_slices(indexable, num, batch_size):
"""divides an indexable object into num slices of length batch_size, and a remainder"""
slices = []
for i in range(num):
slices.append(indexable[i*batch_size:(i+1)*batch_size])
if num * batch_size < len(indexable):
return slices, indexable[num * batch_size:]
else:
return slices, None
@staticmethod
def slice_batch(batch, num, batch_size):
result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch]
return list(zip(*result))
@staticmethod
def cat_batch(batch1, batch2):
if batch1[0] is None:
return batch2
result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)]
return result
@classmethod
def execute(cls, latents, batch_size):
batch_size = batch_size[0]
output_list = []
current_batch = (None, None, None)
processed = 0
for i in range(len(latents)):
# fetch new entry of list
#samples, masks, indices = self.get_batch(latents, i)
next_batch = cls.get_batch(latents, i, processed)
processed += len(next_batch[2])
# set to current if current is None
if current_batch[0] is None:
current_batch = next_batch
# add previous to list if dimensions do not match
elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]:
sliced, _ = cls.slice_batch(current_batch, 1, batch_size)
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
current_batch = next_batch
# cat if everything checks out
else:
current_batch = cls.cat_batch(current_batch, next_batch)
# add to list if dimensions gone above target batch size
if current_batch[0].shape[0] > batch_size:
num = current_batch[0].shape[0] // batch_size
sliced, remainder = cls.slice_batch(current_batch, num, batch_size)
for i in range(num):
output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]})
current_batch = remainder
#add remainder
if current_batch[0] is not None:
sliced, _ = cls.slice_batch(current_batch, 1, batch_size)
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
#get rid of empty masks
for s in output_list:
if s['noise_mask'].mean() == 1.0:
del s['noise_mask']
return io.NodeOutput(output_list)
NODES_LIST = [
ImageRebatch,
LatentRebatch,
]

View File

@ -2313,6 +2313,7 @@ def init_builtin_extra_nodes():
"v3/nodes_cond.py",
"v3/nodes_controlnet.py",
"v3/nodes_cosmos.py",
"v3/nodes_differential_diffusion.py",
"v3/nodes_flux.py",
"v3/nodes_freelunch.py",
"v3/nodes_fresca.py",
@ -2321,6 +2322,7 @@ def init_builtin_extra_nodes():
"v3/nodes_mask.py",
"v3/nodes_preview_any.py",
"v3/nodes_primitive.py",
"v3/nodes_rebatch.py",
"v3/nodes_stable_cascade.py",
"v3/nodes_webcam.py",
]

View File

@ -23,7 +23,7 @@ lint.select = [
# See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f
"F",
]
ignore = ["E501"] # disable line-length checking
lint.ignore = ["E501"] # disable line-length checking
exclude = ["*.ipynb"]
[tool.ruff.lint.per-file-ignores]