mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 19:26:43 +00:00
Merge branch 'master' into worksplit-multigpu
This commit is contained in:
commit
2a54a904f4
@ -13,6 +13,7 @@ from comfy.ldm.flux.layers import LastLayer
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
|
||||
@ -701,7 +702,8 @@ class HiDreamImageTransformer2DModel(nn.Module):
|
||||
control = None,
|
||||
transformer_options = {},
|
||||
) -> torch.Tensor:
|
||||
hidden_states = x
|
||||
bs, c, h, w = x.shape
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
timesteps = t
|
||||
pooled_embeds = y
|
||||
T5_encoder_hidden_states = context
|
||||
@ -794,4 +796,4 @@ class HiDreamImageTransformer2DModel(nn.Module):
|
||||
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
||||
output = self.final_layer(hidden_states, adaln_input)
|
||||
output = self.unpatchify(output, img_sizes)
|
||||
return -output
|
||||
return -output[:, :, :h, :w]
|
||||
|
@ -11,14 +11,15 @@ class HiDreamTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, tokenizer_data=tokenizer_data)
|
||||
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, max_length=128, tokenizer_data=tokenizer_data)
|
||||
self.llama = hunyuan_video.LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=128, pad_token=128009, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||
out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens
|
||||
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
|
@ -32,9 +32,9 @@ def t5_xxl_detect(state_dict, prefix=""):
|
||||
return out
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=77):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=77, max_length=99999999):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=min_length, tokenizer_data=tokenizer_data)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=max_length, min_length=min_length, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class SD3Tokenizer:
|
||||
|
Loading…
x
Reference in New Issue
Block a user