diff --git a/comfy/ldm/ace/attention.py b/comfy/ldm/ace/attention.py index f20a01669..670eb9783 100644 --- a/comfy/ldm/ace/attention.py +++ b/comfy/ldm/ace/attention.py @@ -133,6 +133,7 @@ class Attention(nn.Module): hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, + transformer_options={}, **cross_attention_kwargs, ) -> torch.Tensor: return self.processor( @@ -140,6 +141,7 @@ class Attention(nn.Module): hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, + transformer_options=transformer_options, **cross_attention_kwargs, ) @@ -366,6 +368,7 @@ class CustomerAttnProcessor2_0: encoder_attention_mask: Optional[torch.FloatTensor] = None, rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, + transformer_options={}, *args, **kwargs, ) -> torch.Tensor: @@ -433,7 +436,7 @@ class CustomerAttnProcessor2_0: # the output of sdp = (batch, num_heads, seq_len, head_dim) hidden_states = optimized_attention( - query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True, + query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True, transformer_options=transformer_options, ).to(query.dtype) # linear proj @@ -697,6 +700,7 @@ class LinearTransformerBlock(nn.Module): rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, temb: torch.FloatTensor = None, + transformer_options={}, ): N = hidden_states.shape[0] @@ -720,6 +724,7 @@ class LinearTransformerBlock(nn.Module): encoder_attention_mask=encoder_attention_mask, rotary_freqs_cis=rotary_freqs_cis, rotary_freqs_cis_cross=rotary_freqs_cis_cross, + transformer_options=transformer_options, ) else: attn_output, _ = self.attn( @@ -729,6 +734,7 @@ class LinearTransformerBlock(nn.Module): encoder_attention_mask=None, rotary_freqs_cis=rotary_freqs_cis, rotary_freqs_cis_cross=None, + transformer_options=transformer_options, ) if self.use_adaln_single: @@ -743,6 +749,7 @@ class LinearTransformerBlock(nn.Module): encoder_attention_mask=encoder_attention_mask, rotary_freqs_cis=rotary_freqs_cis, rotary_freqs_cis_cross=rotary_freqs_cis_cross, + transformer_options=transformer_options, ) hidden_states = attn_output + hidden_states diff --git a/comfy/ldm/ace/model.py b/comfy/ldm/ace/model.py index 41d85eeb5..399329853 100644 --- a/comfy/ldm/ace/model.py +++ b/comfy/ldm/ace/model.py @@ -314,6 +314,7 @@ class ACEStepTransformer2DModel(nn.Module): output_length: int = 0, block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None, controlnet_scale: Union[float, torch.Tensor] = 1.0, + transformer_options={}, ): embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype)) temb = self.t_block(embedded_timestep) @@ -339,6 +340,7 @@ class ACEStepTransformer2DModel(nn.Module): rotary_freqs_cis=rotary_freqs_cis, rotary_freqs_cis_cross=encoder_rotary_freqs_cis, temb=temb, + transformer_options=transformer_options, ) output = self.final_layer(hidden_states, embedded_timestep, output_length) @@ -393,6 +395,7 @@ class ACEStepTransformer2DModel(nn.Module): output_length = hidden_states.shape[-1] + transformer_options = kwargs.get("transformer_options", {}) output = self.decode( hidden_states=hidden_states, attention_mask=attention_mask, @@ -402,6 +405,7 @@ class ACEStepTransformer2DModel(nn.Module): output_length=output_length, block_controlnet_hidden_states=block_controlnet_hidden_states, controlnet_scale=controlnet_scale, + transformer_options=transformer_options, ) return output