mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
Merge pull request #8833 from bigcat88/v3-load-save-nodes-replacement
[v3] Migrate LoadImage and SaveImage nodes to v3 schema
This commit is contained in:
commit
19bb231fbd
@ -202,13 +202,13 @@ class WidgetInputV3(InputV3):
|
|||||||
return super().as_dict_V1() | prune_dict({
|
return super().as_dict_V1() | prune_dict({
|
||||||
"default": self.default,
|
"default": self.default,
|
||||||
"socketless": self.socketless,
|
"socketless": self.socketless,
|
||||||
"widgetType": self.widgetType,
|
|
||||||
"forceInput": self.force_input,
|
"forceInput": self.force_input,
|
||||||
})
|
})
|
||||||
|
|
||||||
def get_io_type_V1(self):
|
def get_io_type_V1(self):
|
||||||
return self.widgetType if self.widgetType is not None else super().get_io_type_V1()
|
return self.widgetType if self.widgetType is not None else super().get_io_type_V1()
|
||||||
|
|
||||||
|
|
||||||
class OutputV3(IO_V3):
|
class OutputV3(IO_V3):
|
||||||
def __init__(self, id: str, display_name: str=None, tooltip: str=None,
|
def __init__(self, id: str, display_name: str=None, tooltip: str=None,
|
||||||
is_output_list=False):
|
is_output_list=False):
|
||||||
@ -372,7 +372,7 @@ class String(ComfyTypeIO):
|
|||||||
class Input(WidgetInputV3):
|
class Input(WidgetInputV3):
|
||||||
'''String input.'''
|
'''String input.'''
|
||||||
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
|
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
|
||||||
multiline=False, placeholder: str=None, default: int=None,
|
multiline=False, placeholder: str=None, default: str=None,
|
||||||
socketless: bool=None, force_input: bool=None):
|
socketless: bool=None, force_input: bool=None):
|
||||||
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, self.io_type, force_input)
|
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, self.io_type, force_input)
|
||||||
self.multiline = multiline
|
self.multiline = multiline
|
||||||
@ -389,11 +389,11 @@ class String(ComfyTypeIO):
|
|||||||
class Combo(ComfyType):
|
class Combo(ComfyType):
|
||||||
Type = str
|
Type = str
|
||||||
class Input(WidgetInputV3):
|
class Input(WidgetInputV3):
|
||||||
'''Combo input (dropdown).'''
|
"""Combo input (dropdown)."""
|
||||||
Type = str
|
Type = str
|
||||||
def __init__(self, id: str, options: list[str]=None, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
|
def __init__(self, id: str, options: list[str]=None, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
|
||||||
default: str=None, control_after_generate: bool=None,
|
default: str=None, control_after_generate: bool=None,
|
||||||
image_upload: bool=None, image_folder: FolderType=None,
|
image_upload: bool=None, image_folder: FolderType=None, content_types: list[Literal["image", "video", "audio", "model"]]=None,
|
||||||
remote: RemoteOptions=None,
|
remote: RemoteOptions=None,
|
||||||
socketless: bool=None):
|
socketless: bool=None):
|
||||||
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, self.io_type)
|
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, self.io_type)
|
||||||
@ -402,6 +402,7 @@ class Combo(ComfyType):
|
|||||||
self.control_after_generate = control_after_generate
|
self.control_after_generate = control_after_generate
|
||||||
self.image_upload = image_upload
|
self.image_upload = image_upload
|
||||||
self.image_folder = image_folder
|
self.image_folder = image_folder
|
||||||
|
self.content_types = content_types
|
||||||
self.remote = remote
|
self.remote = remote
|
||||||
self.default: str
|
self.default: str
|
||||||
|
|
||||||
@ -412,6 +413,7 @@ class Combo(ComfyType):
|
|||||||
"control_after_generate": self.control_after_generate,
|
"control_after_generate": self.control_after_generate,
|
||||||
"image_upload": self.image_upload,
|
"image_upload": self.image_upload,
|
||||||
"image_folder": self.image_folder.value if self.image_folder else None,
|
"image_folder": self.image_folder.value if self.image_folder else None,
|
||||||
|
"content_types": self.content_types if self.content_types else None,
|
||||||
"remote": self.remote.as_dict() if self.remote else None,
|
"remote": self.remote.as_dict() if self.remote else None,
|
||||||
})
|
})
|
||||||
|
|
||||||
@ -443,6 +445,20 @@ class MultiCombo(ComfyType):
|
|||||||
class Image(ComfyTypeIO):
|
class Image(ComfyTypeIO):
|
||||||
Type = torch.Tensor
|
Type = torch.Tensor
|
||||||
|
|
||||||
|
@comfytype(io_type="WEBCAM")
|
||||||
|
class Webcam(ComfyTypeIO):
|
||||||
|
Type = str
|
||||||
|
|
||||||
|
class Input(WidgetInputV3):
|
||||||
|
"""Webcam input."""
|
||||||
|
Type = str
|
||||||
|
def __init__(
|
||||||
|
self, id: str, display_name: str=None, optional=False,
|
||||||
|
tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None
|
||||||
|
):
|
||||||
|
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, self.io_type)
|
||||||
|
|
||||||
|
|
||||||
@comfytype(io_type="MASK")
|
@comfytype(io_type="MASK")
|
||||||
class Mask(ComfyTypeIO):
|
class Mask(ComfyTypeIO):
|
||||||
Type = torch.Tensor
|
Type = torch.Tensor
|
||||||
@ -969,7 +985,7 @@ class SchemaV3:
|
|||||||
issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.")
|
issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.")
|
||||||
if len(issues) > 0:
|
if len(issues) > 0:
|
||||||
raise ValueError("\n".join(issues))
|
raise ValueError("\n".join(issues))
|
||||||
|
|
||||||
def finalize(self):
|
def finalize(self):
|
||||||
"""Add hidden based on selected schema options."""
|
"""Add hidden based on selected schema options."""
|
||||||
# if is an api_node, will need key-related hidden
|
# if is an api_node, will need key-related hidden
|
||||||
|
290
comfy_extras/v3/nodes_images.py
Normal file
290
comfy_extras/v3/nodes_images.py
Normal file
@ -0,0 +1,290 @@
|
|||||||
|
import json
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import hashlib
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image, ImageOps, ImageSequence
|
||||||
|
from PIL.PngImagePlugin import PngInfo
|
||||||
|
|
||||||
|
from comfy_api.v3 import io, ui
|
||||||
|
from comfy.cli_args import args
|
||||||
|
import folder_paths
|
||||||
|
import node_helpers
|
||||||
|
|
||||||
|
|
||||||
|
class SaveImage_V3(io.ComfyNodeV3):
|
||||||
|
@classmethod
|
||||||
|
def DEFINE_SCHEMA(cls):
|
||||||
|
return io.SchemaV3(
|
||||||
|
node_id="SaveImage_V3",
|
||||||
|
display_name="Save Image _V3",
|
||||||
|
description="Saves the input images to your ComfyUI output directory.",
|
||||||
|
category="image",
|
||||||
|
inputs=[
|
||||||
|
io.Image.Input(
|
||||||
|
"images",
|
||||||
|
display_name="images",
|
||||||
|
tooltip="The images to save.",
|
||||||
|
),
|
||||||
|
io.String.Input(
|
||||||
|
"filename_prefix",
|
||||||
|
default="ComfyUI",
|
||||||
|
tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||||
|
is_output_node=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, images, filename_prefix="ComfyUI"):
|
||||||
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||||
|
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
|
||||||
|
)
|
||||||
|
results = []
|
||||||
|
for (batch_number, image) in enumerate(images):
|
||||||
|
i = 255. * image.cpu().numpy()
|
||||||
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
||||||
|
metadata = None
|
||||||
|
if not args.disable_metadata:
|
||||||
|
metadata = PngInfo()
|
||||||
|
if cls.hidden.prompt is not None:
|
||||||
|
metadata.add_text("prompt", json.dumps(cls.hidden.prompt))
|
||||||
|
if cls.hidden.extra_pnginfo is not None:
|
||||||
|
for x in cls.hidden.extra_pnginfo:
|
||||||
|
metadata.add_text(x, json.dumps(cls.hidden.extra_pnginfo[x]))
|
||||||
|
|
||||||
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
||||||
|
file = f"{filename_with_batch_num}_{counter:05}_.png"
|
||||||
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
|
||||||
|
results.append({
|
||||||
|
"filename": file,
|
||||||
|
"subfolder": subfolder,
|
||||||
|
"type": "output",
|
||||||
|
})
|
||||||
|
counter += 1
|
||||||
|
|
||||||
|
return io.NodeOutput(ui={"images": results})
|
||||||
|
|
||||||
|
|
||||||
|
class PreviewImage_V3(io.ComfyNodeV3):
|
||||||
|
@classmethod
|
||||||
|
def DEFINE_SCHEMA(cls):
|
||||||
|
return io.SchemaV3(
|
||||||
|
node_id="PreviewImage_V3",
|
||||||
|
display_name="Preview Image _V3",
|
||||||
|
description="Preview the input images.",
|
||||||
|
category="image",
|
||||||
|
inputs=[
|
||||||
|
io.Image.Input(
|
||||||
|
"images",
|
||||||
|
display_name="images",
|
||||||
|
tooltip="The images to preview.",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||||
|
is_output_node=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, images):
|
||||||
|
return io.NodeOutput(ui=ui.PreviewImage(images))
|
||||||
|
|
||||||
|
|
||||||
|
class LoadImage_V3(io.ComfyNodeV3):
|
||||||
|
@classmethod
|
||||||
|
def DEFINE_SCHEMA(cls):
|
||||||
|
return io.SchemaV3(
|
||||||
|
node_id="LoadImage_V3",
|
||||||
|
display_name="Load Image _V3",
|
||||||
|
category="image",
|
||||||
|
inputs=[
|
||||||
|
io.Combo.Input(
|
||||||
|
"image",
|
||||||
|
display_name="image",
|
||||||
|
image_upload=True,
|
||||||
|
image_folder=io.FolderType.input,
|
||||||
|
content_types=["image"],
|
||||||
|
options=cls.get_files_options(),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Image.Output(
|
||||||
|
"IMAGE",
|
||||||
|
),
|
||||||
|
io.Mask.Output(
|
||||||
|
"MASK",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_files_options(cls) -> list[str]:
|
||||||
|
target_dir = folder_paths.get_input_directory()
|
||||||
|
files = [f for f in os.listdir(target_dir) if os.path.isfile(os.path.join(target_dir, f))]
|
||||||
|
return sorted(folder_paths.filter_files_content_types(files, ["image"]))
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, image) -> io.NodeOutput:
|
||||||
|
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
|
||||||
|
|
||||||
|
output_images = []
|
||||||
|
output_masks = []
|
||||||
|
w, h = None, None
|
||||||
|
|
||||||
|
excluded_formats = ['MPO']
|
||||||
|
|
||||||
|
for i in ImageSequence.Iterator(img):
|
||||||
|
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
||||||
|
|
||||||
|
if i.mode == 'I':
|
||||||
|
i = i.point(lambda i: i * (1 / 255))
|
||||||
|
image = i.convert("RGB")
|
||||||
|
|
||||||
|
if len(output_images) == 0:
|
||||||
|
w = image.size[0]
|
||||||
|
h = image.size[1]
|
||||||
|
|
||||||
|
if image.size[0] != w or image.size[1] != h:
|
||||||
|
continue
|
||||||
|
|
||||||
|
image = np.array(image).astype(np.float32) / 255.0
|
||||||
|
image = torch.from_numpy(image)[None,]
|
||||||
|
if 'A' in i.getbands():
|
||||||
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
||||||
|
mask = 1. - torch.from_numpy(mask)
|
||||||
|
elif i.mode == 'P' and 'transparency' in i.info:
|
||||||
|
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
||||||
|
mask = 1. - torch.from_numpy(mask)
|
||||||
|
else:
|
||||||
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
||||||
|
output_images.append(image)
|
||||||
|
output_masks.append(mask.unsqueeze(0))
|
||||||
|
|
||||||
|
if len(output_images) > 1 and img.format not in excluded_formats:
|
||||||
|
output_image = torch.cat(output_images, dim=0)
|
||||||
|
output_mask = torch.cat(output_masks, dim=0)
|
||||||
|
else:
|
||||||
|
output_image = output_images[0]
|
||||||
|
output_mask = output_masks[0]
|
||||||
|
|
||||||
|
return io.NodeOutput(output_image, output_mask)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def fingerprint_inputs(s, image):
|
||||||
|
image_path = folder_paths.get_annotated_filepath(image)
|
||||||
|
m = hashlib.sha256()
|
||||||
|
with open(image_path, 'rb') as f:
|
||||||
|
m.update(f.read())
|
||||||
|
return m.digest().hex()
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def validate_inputs(s, image):
|
||||||
|
if not folder_paths.exists_annotated_filepath(image):
|
||||||
|
return "Invalid image file: {}".format(image)
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
class LoadImageOutput_V3(io.ComfyNodeV3):
|
||||||
|
@classmethod
|
||||||
|
def DEFINE_SCHEMA(cls):
|
||||||
|
return io.SchemaV3(
|
||||||
|
node_id="LoadImageOutput_V3",
|
||||||
|
display_name="Load Image (from Outputs) _V3",
|
||||||
|
description="Load an image from the output folder. "
|
||||||
|
"When the refresh button is clicked, the node will update the image list "
|
||||||
|
"and automatically select the first image, allowing for easy iteration.",
|
||||||
|
category="image",
|
||||||
|
inputs=[
|
||||||
|
io.Combo.Input(
|
||||||
|
"image",
|
||||||
|
display_name="image",
|
||||||
|
image_upload=True,
|
||||||
|
image_folder=io.FolderType.output,
|
||||||
|
content_types=["image"],
|
||||||
|
remote=io.RemoteOptions(
|
||||||
|
route="/internal/files/output",
|
||||||
|
refresh_button=True,
|
||||||
|
control_after_refresh="first",
|
||||||
|
),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Image.Output(
|
||||||
|
"IMAGE",
|
||||||
|
),
|
||||||
|
io.Mask.Output(
|
||||||
|
"MASK",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, image) -> io.NodeOutput:
|
||||||
|
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
|
||||||
|
|
||||||
|
output_images = []
|
||||||
|
output_masks = []
|
||||||
|
w, h = None, None
|
||||||
|
|
||||||
|
excluded_formats = ['MPO']
|
||||||
|
|
||||||
|
for i in ImageSequence.Iterator(img):
|
||||||
|
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
||||||
|
|
||||||
|
if i.mode == 'I':
|
||||||
|
i = i.point(lambda i: i * (1 / 255))
|
||||||
|
image = i.convert("RGB")
|
||||||
|
|
||||||
|
if len(output_images) == 0:
|
||||||
|
w = image.size[0]
|
||||||
|
h = image.size[1]
|
||||||
|
|
||||||
|
if image.size[0] != w or image.size[1] != h:
|
||||||
|
continue
|
||||||
|
|
||||||
|
image = np.array(image).astype(np.float32) / 255.0
|
||||||
|
image = torch.from_numpy(image)[None,]
|
||||||
|
if 'A' in i.getbands():
|
||||||
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
||||||
|
mask = 1. - torch.from_numpy(mask)
|
||||||
|
elif i.mode == 'P' and 'transparency' in i.info:
|
||||||
|
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
||||||
|
mask = 1. - torch.from_numpy(mask)
|
||||||
|
else:
|
||||||
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
||||||
|
output_images.append(image)
|
||||||
|
output_masks.append(mask.unsqueeze(0))
|
||||||
|
|
||||||
|
if len(output_images) > 1 and img.format not in excluded_formats:
|
||||||
|
output_image = torch.cat(output_images, dim=0)
|
||||||
|
output_mask = torch.cat(output_masks, dim=0)
|
||||||
|
else:
|
||||||
|
output_image = output_images[0]
|
||||||
|
output_mask = output_masks[0]
|
||||||
|
|
||||||
|
return io.NodeOutput(output_image, output_mask)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def fingerprint_inputs(s, image):
|
||||||
|
image_path = folder_paths.get_annotated_filepath(image)
|
||||||
|
m = hashlib.sha256()
|
||||||
|
with open(image_path, 'rb') as f:
|
||||||
|
m.update(f.read())
|
||||||
|
return m.digest().hex()
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def validate_inputs(s, image):
|
||||||
|
if not folder_paths.exists_annotated_filepath(image):
|
||||||
|
return "Invalid image file: {}".format(image)
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
NODES_LIST: list[type[io.ComfyNodeV3]] = [
|
||||||
|
SaveImage_V3,
|
||||||
|
PreviewImage_V3,
|
||||||
|
LoadImage_V3,
|
||||||
|
LoadImageOutput_V3,
|
||||||
|
]
|
32
comfy_extras/v3/nodes_mask.py
Normal file
32
comfy_extras/v3/nodes_mask.py
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
from comfy_api.v3 import io, ui
|
||||||
|
|
||||||
|
|
||||||
|
class MaskPreview_V3(io.ComfyNodeV3):
|
||||||
|
"""Mask Preview - original implement in ComfyUI_essentials.
|
||||||
|
|
||||||
|
https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81
|
||||||
|
Upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
|
||||||
|
"""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def DEFINE_SCHEMA(cls):
|
||||||
|
return io.SchemaV3(
|
||||||
|
node_id="MaskPreview_V3",
|
||||||
|
display_name="Convert Mask to Image _V3",
|
||||||
|
category="mask",
|
||||||
|
inputs=[
|
||||||
|
io.Mask.Input(
|
||||||
|
"masks",
|
||||||
|
display_name="masks",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||||
|
is_output_node=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, masks):
|
||||||
|
return io.NodeOutput(ui=ui.PreviewMask(masks))
|
||||||
|
|
||||||
|
|
||||||
|
NODES_LIST: list[type[io.ComfyNodeV3]] = [MaskPreview_V3]
|
117
comfy_extras/v3/nodes_webcam.py
Normal file
117
comfy_extras/v3/nodes_webcam.py
Normal file
@ -0,0 +1,117 @@
|
|||||||
|
import hashlib
|
||||||
|
import torch
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image, ImageOps, ImageSequence
|
||||||
|
|
||||||
|
from comfy_api.v3 import io
|
||||||
|
import nodes
|
||||||
|
import folder_paths
|
||||||
|
import node_helpers
|
||||||
|
|
||||||
|
|
||||||
|
MAX_RESOLUTION = nodes.MAX_RESOLUTION
|
||||||
|
|
||||||
|
|
||||||
|
class WebcamCapture_V3(io.ComfyNodeV3):
|
||||||
|
@classmethod
|
||||||
|
def DEFINE_SCHEMA(cls):
|
||||||
|
return io.SchemaV3(
|
||||||
|
node_id="WebcamCapture_V3",
|
||||||
|
display_name="Webcam Capture _V3",
|
||||||
|
category="image",
|
||||||
|
inputs=[
|
||||||
|
io.Webcam.Input(
|
||||||
|
"image",
|
||||||
|
display_name="image",
|
||||||
|
),
|
||||||
|
io.Int.Input(
|
||||||
|
"width",
|
||||||
|
display_name="width",
|
||||||
|
default=0,
|
||||||
|
min=0,
|
||||||
|
max=MAX_RESOLUTION,
|
||||||
|
step=1,
|
||||||
|
),
|
||||||
|
io.Int.Input(
|
||||||
|
"height",
|
||||||
|
display_name="height",
|
||||||
|
default=0,
|
||||||
|
min=0,
|
||||||
|
max=MAX_RESOLUTION,
|
||||||
|
step=1,
|
||||||
|
),
|
||||||
|
io.Boolean.Input(
|
||||||
|
"capture_on_queue",
|
||||||
|
default=True,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Image.Output(
|
||||||
|
"IMAGE",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, image, **kwargs) -> io.NodeOutput:
|
||||||
|
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
|
||||||
|
|
||||||
|
output_images = []
|
||||||
|
output_masks = []
|
||||||
|
w, h = None, None
|
||||||
|
|
||||||
|
excluded_formats = ['MPO']
|
||||||
|
|
||||||
|
for i in ImageSequence.Iterator(img):
|
||||||
|
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
||||||
|
|
||||||
|
if i.mode == 'I':
|
||||||
|
i = i.point(lambda i: i * (1 / 255))
|
||||||
|
image = i.convert("RGB")
|
||||||
|
|
||||||
|
if len(output_images) == 0:
|
||||||
|
w = image.size[0]
|
||||||
|
h = image.size[1]
|
||||||
|
|
||||||
|
if image.size[0] != w or image.size[1] != h:
|
||||||
|
continue
|
||||||
|
|
||||||
|
image = np.array(image).astype(np.float32) / 255.0
|
||||||
|
image = torch.from_numpy(image)[None,]
|
||||||
|
if 'A' in i.getbands():
|
||||||
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
||||||
|
mask = 1. - torch.from_numpy(mask)
|
||||||
|
elif i.mode == 'P' and 'transparency' in i.info:
|
||||||
|
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
||||||
|
mask = 1. - torch.from_numpy(mask)
|
||||||
|
else:
|
||||||
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
||||||
|
output_images.append(image)
|
||||||
|
output_masks.append(mask.unsqueeze(0))
|
||||||
|
|
||||||
|
if len(output_images) > 1 and img.format not in excluded_formats:
|
||||||
|
output_image = torch.cat(output_images, dim=0)
|
||||||
|
output_mask = torch.cat(output_masks, dim=0)
|
||||||
|
else:
|
||||||
|
output_image = output_images[0]
|
||||||
|
output_mask = output_masks[0]
|
||||||
|
|
||||||
|
return io.NodeOutput(output_image, output_mask)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def fingerprint_inputs(s, image, width, height, capture_on_queue):
|
||||||
|
image_path = folder_paths.get_annotated_filepath(image)
|
||||||
|
m = hashlib.sha256()
|
||||||
|
with open(image_path, 'rb') as f:
|
||||||
|
m.update(f.read())
|
||||||
|
return m.digest().hex()
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def validate_inputs(s, image):
|
||||||
|
if not folder_paths.exists_annotated_filepath(image):
|
||||||
|
return "Invalid image file: {}".format(image)
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
NODES_LIST: list[type[io.ComfyNodeV3]] = [WebcamCapture_V3]
|
@ -321,7 +321,10 @@ def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb
|
|||||||
elif isinstance(r, NodeOutput):
|
elif isinstance(r, NodeOutput):
|
||||||
# V3
|
# V3
|
||||||
if r.ui is not None:
|
if r.ui is not None:
|
||||||
uis.append(r.ui.as_dict())
|
if isinstance(r.ui, dict):
|
||||||
|
uis.append(r.ui)
|
||||||
|
else:
|
||||||
|
uis.append(r.ui.as_dict())
|
||||||
if r.expand is not None:
|
if r.expand is not None:
|
||||||
has_subgraph = True
|
has_subgraph = True
|
||||||
new_graph = r.expand
|
new_graph = r.expand
|
||||||
|
7
nodes.py
7
nodes.py
@ -26,7 +26,7 @@ import comfy.sd
|
|||||||
import comfy.utils
|
import comfy.utils
|
||||||
import comfy.controlnet
|
import comfy.controlnet
|
||||||
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict, FileLocator
|
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict, FileLocator
|
||||||
from comfy_api.v3.io import ComfyNodeV3
|
from comfy_api.v3 import io
|
||||||
|
|
||||||
import comfy.clip_vision
|
import comfy.clip_vision
|
||||||
|
|
||||||
@ -2162,7 +2162,7 @@ def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes
|
|||||||
# V3 node definition
|
# V3 node definition
|
||||||
elif getattr(module, "NODES_LIST", None) is not None:
|
elif getattr(module, "NODES_LIST", None) is not None:
|
||||||
for node_cls in module.NODES_LIST:
|
for node_cls in module.NODES_LIST:
|
||||||
node_cls: ComfyNodeV3
|
node_cls: io.ComfyNodeV3
|
||||||
schema = node_cls.GET_SCHEMA()
|
schema = node_cls.GET_SCHEMA()
|
||||||
if schema.node_id not in ignore:
|
if schema.node_id not in ignore:
|
||||||
NODE_CLASS_MAPPINGS[schema.node_id] = node_cls
|
NODE_CLASS_MAPPINGS[schema.node_id] = node_cls
|
||||||
@ -2299,6 +2299,9 @@ def init_builtin_extra_nodes():
|
|||||||
"nodes_tcfg.py",
|
"nodes_tcfg.py",
|
||||||
"nodes_v3_test.py",
|
"nodes_v3_test.py",
|
||||||
"nodes_v1_test.py",
|
"nodes_v1_test.py",
|
||||||
|
"v3/nodes_images.py",
|
||||||
|
"v3/nodes_mask.py",
|
||||||
|
"v3/nodes_webcam.py",
|
||||||
]
|
]
|
||||||
|
|
||||||
import_failed = []
|
import_failed = []
|
||||||
|
Loading…
x
Reference in New Issue
Block a user