mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-10 11:35:40 +00:00
Use fp16 if checkpoint weights are fp16 and the model supports it.
This commit is contained in:
@@ -674,7 +674,7 @@ def unet_inital_load_device(parameters, dtype):
|
||||
def maximum_vram_for_weights(device=None):
|
||||
return (get_total_memory(device) * 0.88 - minimum_inference_memory())
|
||||
|
||||
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
|
||||
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32], weight_dtype=None):
|
||||
if model_params < 0:
|
||||
model_params = 1000000000000000000000
|
||||
if args.fp32_unet:
|
||||
@@ -692,10 +692,8 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
|
||||
|
||||
fp8_dtype = None
|
||||
try:
|
||||
for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
||||
if dtype in supported_dtypes:
|
||||
fp8_dtype = dtype
|
||||
break
|
||||
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
||||
fp8_dtype = weight_dtype
|
||||
except:
|
||||
pass
|
||||
|
||||
@@ -707,7 +705,7 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
|
||||
if model_params * 2 > free_model_memory:
|
||||
return fp8_dtype
|
||||
|
||||
if PRIORITIZE_FP16:
|
||||
if PRIORITIZE_FP16 or weight_dtype == torch.float16:
|
||||
if torch.float16 in supported_dtypes and should_use_fp16(device=device, model_params=model_params):
|
||||
return torch.float16
|
||||
|
||||
|
Reference in New Issue
Block a user