More API Nodes (#7956)

* Add Ideogram generate node.

* Add staging api.

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* Remove uv.lock

* Remove polling operations.

* Revert "Remove polling operations."

* Update stubs.

* Added Ideogram and Minimax back in.

* Added initial BFL Flux 1.1 [pro] Ultra node (#11)

* Add --comfy-api-base launch arg (#13)

* Add instructions for staging development. (#14)

* remove validation to make it easier to run against LAN copies of the API

* Manually add BFL polling status response schema (#15)

* Add function for uploading files. (#18)

* Add Luma nodes (#16)

* Refactor util functions (#20)

* Add VIDEO type (#21)

* Add rest of Luma node functionality (#19)

* Fix image_luma_ref not working (#28)

* [Bug] Remove duplicated option T2V-01 in MinimaxTextToVideoNode (#31)

* Add utils to map from pydantic model fields to comfy node inputs (#30)

* add veo2, bump av req (#32)

* Add Recraft nodes (#29)

* Add Kling Nodes (#12)

* Add Camera Concepts (luma_concepts) to Luma Video nodes (#33)

* Add Runway nodes (#17)

* Convert Minimax node to use VIDEO output type (#34)

* Standard `CATEGORY` system for api nodes (#35)

* Set `Content-Type` header when uploading files (#36)

* add better error propagation to veo2 (#37)

* Add Realistic Image and Logo Raster styles for Recraft v3 (#38)

* Fix runway image upload and progress polling (#39)

* Fix image upload for Luma: only include `Content-Type` header field if it's set explicitly (#40)

* Moved Luma nodes to nodes_luma.py (#47)

* Moved Recraft nodes to nodes_recraft.py (#48)

* Add Pixverse nodes (#46)

* Move and fix BFL nodes to node_bfl.py (#49)

* Move and edit Minimax node to nodes_minimax.py (#50)

* Add Minimax Image to Video node + Cleanup (#51)

* Add Recraft Text to Vector node, add Save SVG node to handle its output (#53)

* Added pixverse_template support to Pixverse Text to Video node (#54)

* Added Recraft Controls + Recraft Color RGB nodes (#57)

* split remaining nodes out of nodes_api, make utility lib, refactor ideogram (#61)

* Add types and doctstrings to utils file (#64)

* Fix: `PollingOperation` progress bar update progress by absolute value (#65)

* Use common download function in kling nodes module (#67)

* Fix: Luma video nodes in `api nodes/image` category (#68)

* Set request type explicitly (#66)

* Add `control_after_generate` to all seed inputs (#69)

* Fix bug: deleting `Content-Type` when property does not exist (#73)

* Add preview to Save SVG node (#74)

* change default poll interval (#76), rework veo2

* Add Pixverse and updated Kling types (#75)

* Added Pixverse Image to VIdeo node (#77)

* Add Pixverse Transition Video node (#79)

* Proper ray-1-6 support as fix has been applied in backend (#80)

* Added Recraft Style - Infinite Style Library node (#82)

* add ideogram v3 (#83)

* [Kling] Split Camera Control config to its own node (#81)

* Add Pika i2v and t2v nodes (#52)

* Temporary Fix for Runway (#87)

* Added Stability Stable Image Ultra node (#86)

* Remove Runway nodes (#88)

* Fix: Prompt text can't be validated in Kling nodes when using primitive nodes (#90)

* Fix: typo in node name "Stabiliy" => "Stability" (#91)

* Add String (Multiline) node (#93)

* Update Pika Duration and Resolution options (#94)

* Change base branch to master. Not main. (#95)

* Fix UploadRequest file_name param (#98)

* Removed Infinite Style Library until later (#99)

* fix ideogram style types (#100)

* fix multi image return (#101)

* add metadata saving to SVG (#102)

* Bump templates version to include API node template workflows (#104)

* Fix: `download_url_to_video_output` return type (#103)

* fix 4o generation bug (#106)

* Serve SVG files directly (#107)

* Add a bunch of nodes, 3 ready to use, the rest waiting for endpoint support (#108)

* Revert "Serve SVG files directly" (#111)

* Expose 4 remaining Recraft nodes (#112)

* [Kling] Add `Duration` and `Video ID` outputs (#105)

* Fix: datamodel-codegen sets string#binary type to non-existent `bytes_aliased` variable  (#114)

* Fix: Dall-e 2 not setting request content-type dynamically (#113)

* Default request timeout: one hour. (#116)

* Add Kling nodes: camera control, start-end frame, lip-sync, video extend (#115)

* Add 8 nodes - 4 BFL, 4 Stability (#117)

* Fix error for Recraft ImageToImage error for nonexistent random_seed param (#118)

* Add remaining Pika nodes (#119)

* Make controls input work for Recraft Image to Image node (#120)

* Use upstream PR: Support saving Comfy VIDEO type to buffer (#123)

* Use Upstream PR: "Fix: Error creating video when sliced audio tensor chunks are non-c-contiguous" (#127)

* Improve audio upload utils (#128)

* Fix: Nested `AnyUrl` in request model cannot be serialized (Kling, Runway) (#129)

* Show errors and API output URLs to the user (change log levels) (#131)

* Fix: Luma I2I fails when weight is <=0.01 (#132)

* Change category of `LumaConcepts` node from image to video (#133)

* Fix: `image.shape` accessed before `image` is null-checked (#134)

* Apply small fixes and most prompt validation (if needed to avoid API error) (#135)

* Node name/category modifications (#140)

* Add back Recraft Style - Infinite Style Library node (#141)

* Fixed Kling: Check attributes of pydantic types. (#144)

* Bump `comfyui-workflow-templates` version (#142)

* [Kling] Print response data when error validating response (#146)

* Fix: error validating Kling image response, trying to use `"key" in` on Pydantic class instance (#147)

* [Kling] Fix: Correct/verify supported subset of input combos in Kling nodes (#149)

* [Kling] Fix typo in node description (#150)

* [Kling] Fix: CFG min/max not being enforced (#151)

* Rebase launch-rebase (private) on prep-branch (public copy of master) (#153)

* Bump templates version (#154)

* Fix: Kling image gen nodes don't return entire batch when `n` > 1 (#152)

* Remove pixverse_template from PixVerse Transition Video node (#155)

* Invert image_weight value on Luma Image to Image node (#156)

* Invert and resize mask for Ideogram V3 node to match masking conventions (#158)

* [Kling] Fix: image generation nodes not returning Tuple (#159)

* [Bug] [Kling] Fix Kling camera control (#161)

* Kling Image Gen v2 + improve node descriptions for Flux/OpenAI (#160)

* [Kling] Don't return video_id from dual effect video (#162)

* Bump frontend to 1.18.8 (#163)

* Use 3.9 compat syntax (#164)

* Use Python 3.10

* add example env var

* Update templates to 0.1.11

* Bump frontend to 1.18.9

---------

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
Co-authored-by: Christian Byrne <cbyrne@comfy.org>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
This commit is contained in:
Jedrzej Kosinski 2025-05-06 03:23:00 -05:00 committed by GitHub
parent d9c80a85e5
commit 1271c4ef9d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
34 changed files with 14101 additions and 737 deletions

View File

@ -17,7 +17,7 @@ jobs:
path: "ComfyUI" path: "ComfyUI"
- uses: actions/setup-python@v4 - uses: actions/setup-python@v4
with: with:
python-version: '3.9' python-version: '3.10'
- name: Install requirements - name: Install requirements
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip

View File

@ -22,10 +22,19 @@ jobs:
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install 'datamodel-code-generator[http]' pip install 'datamodel-code-generator[http]'
npm install @redocly/cli
- name: Download OpenAPI spec
run: |
curl -o openapi.yaml https://api.comfy.org/openapi
- name: Filter OpenAPI spec with Redocly
run: |
npx @redocly/cli bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_nodes/redocly.yaml --remove-unused-components
- name: Generate API models - name: Generate API models
run: | run: |
datamodel-codegen --use-subclass-enum --url https://api.comfy.org/openapi --output comfy_api_nodes/apis --output-model-type pydantic_v2.BaseModel datamodel-codegen --use-subclass-enum --input filtered-openapi.yaml --output comfy_api_nodes/apis --output-model-type pydantic_v2.BaseModel
- name: Check for changes - name: Check for changes
id: git-check id: git-check
@ -44,4 +53,4 @@ jobs:
Generated automatically by the a Github workflow. Generated automatically by the a Github workflow.
branch: update-api-stubs branch: update-api-stubs
delete-branch: true delete-branch: true
base: main base: master

3
.gitignore vendored
View File

@ -21,3 +21,6 @@ venv/
*.log *.log
web_custom_versions/ web_custom_versions/
.DS_Store .DS_Store
openapi.yaml
filtered-openapi.yaml
uv.lock

View File

@ -192,6 +192,13 @@ parser.add_argument("--user-directory", type=is_valid_directory, default=None, h
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.") parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
parser.add_argument(
"--comfy-api-base",
type=str,
default="https://api.comfy.org",
help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
)
if comfy.options.args_parsing: if comfy.options.args_parsing:
args = parser.parse_args() args = parser.parse_args()
else: else:

41
comfy_api_nodes/README.md Normal file
View File

@ -0,0 +1,41 @@
# ComfyUI API Nodes
## Introduction
Below are a collection of nodes that work by calling external APIs. More information available in our [docs](https://docs.comfy.org/tutorials/api-nodes/overview#api-nodes).
## Development
While developing, you should be testing against the Staging environment. To test against staging:
**Install ComfyUI_frontend**
Follow the instructions [here](https://github.com/Comfy-Org/ComfyUI_frontend) to start the frontend server. By default, it will connect to Staging authentication.
> **Hint:** If you use --front-end-version argument for ComfyUI, it will use production authentication.
```bash
python run main.py --comfy-api-base https://stagingapi.comfy.org
```
API stubs are generated through automatic codegen tools from OpenAPI definitions. Since the Comfy Org OpenAPI definition contains many things from the Comfy Registry as well, we use redocly/cli to filter out only the paths relevant for API nodes.
### Redocly Instructions
**Tip**
When developing locally, use the `redocly-dev.yaml` file to generate pydantic models. This lets you use stubs for APIs that are not marked `Released` yet.
Before your API node PR merges, make sure to add the `Released` tag to the `openapi.yaml` file and test in staging.
```bash
# Download the OpenAPI file from prod server.
curl -o openapi.yaml https://stagingapi.comfy.org/openapi
# Filter out unneeded API definitions.
npm install -g @redocly/cli
redocly bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_nodes/redocly-dev.yaml --remove-unused-components
# Generate the pydantic datamodels for validation.
datamodel-codegen --use-subclass-enum --field-constraints --strict-types bytes --input filtered-openapi.yaml --output comfy_api_nodes/apis/__init__.py --output-model-type pydantic_v2.BaseModel
```

View File

@ -0,0 +1,575 @@
import io
import logging
from typing import Optional
from comfy.utils import common_upscale
from comfy_api.input_impl import VideoFromFile
from comfy_api.util import VideoContainer, VideoCodec
from comfy_api.input.video_types import VideoInput
from comfy_api.input.basic_types import AudioInput
from comfy_api_nodes.apis.client import (
ApiClient,
ApiEndpoint,
HttpMethod,
SynchronousOperation,
UploadRequest,
UploadResponse,
)
import numpy as np
from PIL import Image
import requests
import torch
import math
import base64
import uuid
from io import BytesIO
import av
def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFromFile:
"""Downloads a video from a URL and returns a `VIDEO` output.
Args:
video_url: The URL of the video to download.
Returns:
A Comfy node `VIDEO` output.
"""
video_io = download_url_to_bytesio(video_url, timeout)
if video_io is None:
error_msg = f"Failed to download video from {video_url}"
logging.error(error_msg)
raise ValueError(error_msg)
return VideoFromFile(video_io)
def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor:
"""Downscale input image tensor to roughly the specified total pixels."""
samples = image.movedim(-1, 1)
total = int(total_pixels)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
if scale_by >= 1:
return image
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = common_upscale(samples, width, height, "lanczos", "disabled")
s = s.movedim(1, -1)
return s
def validate_and_cast_response(response, timeout: int = None) -> torch.Tensor:
"""Validates and casts a response to a torch.Tensor.
Args:
response: The response to validate and cast.
timeout: Request timeout in seconds. Defaults to None (no timeout).
Returns:
A torch.Tensor representing the image (1, H, W, C).
Raises:
ValueError: If the response is not valid.
"""
# validate raw JSON response
data = response.data
if not data or len(data) == 0:
raise ValueError("No images returned from API endpoint")
# Initialize list to store image tensors
image_tensors: list[torch.Tensor] = []
# Process each image in the data array
for image_data in data:
image_url = image_data.url
b64_data = image_data.b64_json
if not image_url and not b64_data:
raise ValueError("No image was generated in the response")
if b64_data:
img_data = base64.b64decode(b64_data)
img = Image.open(io.BytesIO(img_data))
elif image_url:
img_response = requests.get(image_url, timeout=timeout)
if img_response.status_code != 200:
raise ValueError("Failed to download the image")
img = Image.open(io.BytesIO(img_response.content))
img = img.convert("RGBA")
# Convert to numpy array, normalize to float32 between 0 and 1
img_array = np.array(img).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_array)
# Add to list of tensors
image_tensors.append(img_tensor)
return torch.stack(image_tensors, dim=0)
def validate_aspect_ratio(
aspect_ratio: str,
minimum_ratio: float,
maximum_ratio: float,
minimum_ratio_str: str,
maximum_ratio_str: str,
) -> float:
"""Validates and casts an aspect ratio string to a float.
Args:
aspect_ratio: The aspect ratio string to validate.
minimum_ratio: The minimum aspect ratio.
maximum_ratio: The maximum aspect ratio.
minimum_ratio_str: The minimum aspect ratio string.
maximum_ratio_str: The maximum aspect ratio string.
Returns:
The validated and cast aspect ratio.
Raises:
Exception: If the aspect ratio is not valid.
"""
# get ratio values
numbers = aspect_ratio.split(":")
if len(numbers) != 2:
raise TypeError(
f"Aspect ratio must be in the format X:Y, such as 16:9, but was {aspect_ratio}."
)
try:
numerator = int(numbers[0])
denominator = int(numbers[1])
except ValueError as exc:
raise TypeError(
f"Aspect ratio must contain numbers separated by ':', such as 16:9, but was {aspect_ratio}."
) from exc
calculated_ratio = numerator / denominator
# if not close to minimum and maximum, check bounds
if not math.isclose(calculated_ratio, minimum_ratio) or not math.isclose(
calculated_ratio, maximum_ratio
):
if calculated_ratio < minimum_ratio:
raise TypeError(
f"Aspect ratio cannot reduce to any less than {minimum_ratio_str} ({minimum_ratio}), but was {aspect_ratio} ({calculated_ratio})."
)
elif calculated_ratio > maximum_ratio:
raise TypeError(
f"Aspect ratio cannot reduce to any greater than {maximum_ratio_str} ({maximum_ratio}), but was {aspect_ratio} ({calculated_ratio})."
)
return aspect_ratio
def mimetype_to_extension(mime_type: str) -> str:
"""Converts a MIME type to a file extension."""
return mime_type.split("/")[-1].lower()
def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO:
"""Downloads content from a URL using requests and returns it as BytesIO.
Args:
url: The URL to download.
timeout: Request timeout in seconds. Defaults to None (no timeout).
Returns:
BytesIO object containing the downloaded content.
"""
response = requests.get(url, stream=True, timeout=timeout)
response.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX)
return BytesIO(response.content)
def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor:
"""Converts image data from BytesIO to a torch.Tensor.
Args:
image_bytesio: BytesIO object containing the image data.
mode: The PIL mode to convert the image to (e.g., "RGB", "RGBA").
Returns:
A torch.Tensor representing the image (1, H, W, C).
Raises:
PIL.UnidentifiedImageError: If the image data cannot be identified.
ValueError: If the specified mode is invalid.
"""
image = Image.open(image_bytesio)
image = image.convert(mode)
image_array = np.array(image).astype(np.float32) / 255.0
return torch.from_numpy(image_array).unsqueeze(0)
def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor:
"""Downloads an image from a URL and returns a [B, H, W, C] tensor."""
image_bytesio = download_url_to_bytesio(url, timeout)
return bytesio_to_image_tensor(image_bytesio)
def process_image_response(response: requests.Response) -> torch.Tensor:
"""Uses content from a Response object and converts it to a torch.Tensor"""
return bytesio_to_image_tensor(BytesIO(response.content))
def _tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image:
"""Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling."""
if len(image.shape) > 3:
image = image[0]
# TODO: remove alpha if not allowed and present
input_tensor = image.cpu()
input_tensor = downscale_image_tensor(
input_tensor.unsqueeze(0), total_pixels=total_pixels
).squeeze()
image_np = (input_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
return img
def _pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO:
"""Converts a PIL Image to a BytesIO object."""
if not mime_type:
mime_type = "image/png"
img_byte_arr = io.BytesIO()
# Derive PIL format from MIME type (e.g., 'image/png' -> 'PNG')
pil_format = mime_type.split("/")[-1].upper()
if pil_format == "JPG":
pil_format = "JPEG"
img.save(img_byte_arr, format=pil_format)
img_byte_arr.seek(0)
return img_byte_arr
def tensor_to_bytesio(
image: torch.Tensor,
name: Optional[str] = None,
total_pixels: int = 2048 * 2048,
mime_type: str = "image/png",
) -> BytesIO:
"""Converts a torch.Tensor image to a named BytesIO object.
Args:
image: Input torch.Tensor image.
name: Optional filename for the BytesIO object.
total_pixels: Maximum total pixels for potential downscaling.
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
Returns:
Named BytesIO object containing the image data.
"""
if not mime_type:
mime_type = "image/png"
pil_image = _tensor_to_pil(image, total_pixels=total_pixels)
img_binary = _pil_to_bytesio(pil_image, mime_type=mime_type)
img_binary.name = (
f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}"
)
return img_binary
def tensor_to_base64_string(
image_tensor: torch.Tensor,
total_pixels: int = 2048 * 2048,
mime_type: str = "image/png",
) -> str:
"""Convert [B, H, W, C] or [H, W, C] tensor to a base64 string.
Args:
image_tensor: Input torch.Tensor image.
total_pixels: Maximum total pixels for potential downscaling.
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
Returns:
Base64 encoded string of the image.
"""
pil_image = _tensor_to_pil(image_tensor, total_pixels=total_pixels)
img_byte_arr = _pil_to_bytesio(pil_image, mime_type=mime_type)
img_bytes = img_byte_arr.getvalue()
# Encode bytes to base64 string
base64_encoded_string = base64.b64encode(img_bytes).decode("utf-8")
return base64_encoded_string
def tensor_to_data_uri(
image_tensor: torch.Tensor,
total_pixels: int = 2048 * 2048,
mime_type: str = "image/png",
) -> str:
"""Converts a tensor image to a Data URI string.
Args:
image_tensor: Input torch.Tensor image.
total_pixels: Maximum total pixels for potential downscaling.
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp').
Returns:
Data URI string (e.g., 'data:image/png;base64,...').
"""
base64_string = tensor_to_base64_string(image_tensor, total_pixels, mime_type)
return f"data:{mime_type};base64,{base64_string}"
def upload_file_to_comfyapi(
file_bytes_io: BytesIO,
filename: str,
upload_mime_type: str,
auth_token: Optional[str] = None,
) -> str:
"""
Uploads a single file to ComfyUI API and returns its download URL.
Args:
file_bytes_io: BytesIO object containing the file data.
filename: The filename of the file.
upload_mime_type: MIME type of the file.
auth_token: Optional authentication token.
Returns:
The download URL for the uploaded file.
"""
request_object = UploadRequest(file_name=filename, content_type=upload_mime_type)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/customers/storage",
method=HttpMethod.POST,
request_model=UploadRequest,
response_model=UploadResponse,
),
request=request_object,
auth_token=auth_token,
)
response: UploadResponse = operation.execute()
upload_response = ApiClient.upload_file(
response.upload_url, file_bytes_io, content_type=upload_mime_type
)
upload_response.raise_for_status()
return response.download_url
def upload_video_to_comfyapi(
video: VideoInput,
auth_token: Optional[str] = None,
container: VideoContainer = VideoContainer.MP4,
codec: VideoCodec = VideoCodec.H264,
max_duration: Optional[int] = None,
) -> str:
"""
Uploads a single video to ComfyUI API and returns its download URL.
Uses the specified container and codec for saving the video before upload.
Args:
video: VideoInput object (Comfy VIDEO type).
auth_token: Optional authentication token.
container: The video container format to use (default: MP4).
codec: The video codec to use (default: H264).
max_duration: Optional maximum duration of the video in seconds. If the video is longer than this, an error will be raised.
Returns:
The download URL for the uploaded video file.
"""
if max_duration is not None:
try:
actual_duration = video.duration_seconds
if actual_duration is not None and actual_duration > max_duration:
raise ValueError(
f"Video duration ({actual_duration:.2f}s) exceeds the maximum allowed ({max_duration}s)."
)
except Exception as e:
logging.error(f"Error getting video duration: {e}")
raise ValueError(f"Could not verify video duration from source: {e}") from e
upload_mime_type = f"video/{container.value.lower()}"
filename = f"uploaded_video.{container.value.lower()}"
# Convert VideoInput to BytesIO using specified container/codec
video_bytes_io = io.BytesIO()
video.save_to(video_bytes_io, format=container, codec=codec)
video_bytes_io.seek(0)
return upload_file_to_comfyapi(
video_bytes_io, filename, upload_mime_type, auth_token
)
def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray:
"""
Prepares audio waveform for av library by converting to a contiguous numpy array.
Args:
waveform: a tensor of shape (1, channels, samples) derived from a Comfy `AUDIO` type.
Returns:
Contiguous numpy array of the audio waveform. If the audio was batched,
the first item is taken.
"""
if waveform.ndim != 3 or waveform.shape[0] != 1:
raise ValueError("Expected waveform tensor shape (1, channels, samples)")
# If batch is > 1, take first item
if waveform.shape[0] > 1:
waveform = waveform[0]
# Prepare for av: remove batch dim, move to CPU, make contiguous, convert to numpy array
audio_data_np = waveform.squeeze(0).cpu().contiguous().numpy()
if audio_data_np.dtype != np.float32:
audio_data_np = audio_data_np.astype(np.float32)
return audio_data_np
def audio_ndarray_to_bytesio(
audio_data_np: np.ndarray,
sample_rate: int,
container_format: str = "mp4",
codec_name: str = "aac",
) -> BytesIO:
"""
Encodes a numpy array of audio data into a BytesIO object.
"""
audio_bytes_io = io.BytesIO()
with av.open(audio_bytes_io, mode="w", format=container_format) as output_container:
audio_stream = output_container.add_stream(codec_name, rate=sample_rate)
frame = av.AudioFrame.from_ndarray(
audio_data_np,
format="fltp",
layout="stereo" if audio_data_np.shape[0] > 1 else "mono",
)
frame.sample_rate = sample_rate
frame.pts = 0
for packet in audio_stream.encode(frame):
output_container.mux(packet)
# Flush stream
for packet in audio_stream.encode(None):
output_container.mux(packet)
audio_bytes_io.seek(0)
return audio_bytes_io
def upload_audio_to_comfyapi(
audio: AudioInput,
auth_token: Optional[str] = None,
container_format: str = "mp4",
codec_name: str = "aac",
mime_type: str = "audio/mp4",
filename: str = "uploaded_audio.mp4",
) -> str:
"""
Uploads a single audio input to ComfyUI API and returns its download URL.
Encodes the raw waveform into the specified format before uploading.
Args:
audio: a Comfy `AUDIO` type (contains waveform tensor and sample_rate)
auth_token: Optional authentication token.
Returns:
The download URL for the uploaded audio file.
"""
sample_rate: int = audio["sample_rate"]
waveform: torch.Tensor = audio["waveform"]
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
audio_bytes_io = audio_ndarray_to_bytesio(
audio_data_np, sample_rate, container_format, codec_name
)
return upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_token)
def upload_images_to_comfyapi(
image: torch.Tensor, max_images=8, auth_token=None, mime_type: Optional[str] = None
) -> list[str]:
"""
Uploads images to ComfyUI API and returns download URLs.
To upload multiple images, stack them in the batch dimension first.
Args:
image: Input torch.Tensor image.
max_images: Maximum number of images to upload.
auth_token: Optional authentication token.
mime_type: Optional MIME type for the image.
"""
# if batch, try to upload each file if max_images is greater than 0
idx_image = 0
download_urls: list[str] = []
is_batch = len(image.shape) > 3
batch_length = 1
if is_batch:
batch_length = image.shape[0]
while True:
curr_image = image
if len(image.shape) > 3:
curr_image = image[idx_image]
# get BytesIO version of image
img_binary = tensor_to_bytesio(curr_image, mime_type=mime_type)
# first, request upload/download urls from comfy API
if not mime_type:
request_object = UploadRequest(file_name=img_binary.name)
else:
request_object = UploadRequest(
file_name=img_binary.name, content_type=mime_type
)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/customers/storage",
method=HttpMethod.POST,
request_model=UploadRequest,
response_model=UploadResponse,
),
request=request_object,
auth_token=auth_token,
)
response = operation.execute()
upload_response = ApiClient.upload_file(
response.upload_url, img_binary, content_type=mime_type
)
# verify success
try:
upload_response.raise_for_status()
except requests.exceptions.HTTPError as e:
raise ValueError(f"Could not upload one or more images: {e}") from e
# add download_url to list
download_urls.append(response.download_url)
idx_image += 1
# stop uploading additional files if done
if is_batch and max_images > 0:
if idx_image >= max_images:
break
if idx_image >= batch_length:
break
return download_urls
def resize_mask_to_image(mask: torch.Tensor, image: torch.Tensor,
upscale_method="nearest-exact", crop="disabled",
allow_gradient=True, add_channel_dim=False):
"""
Resize mask to be the same dimensions as an image, while maintaining proper format for API calls.
"""
_, H, W, _ = image.shape
mask = mask.unsqueeze(-1)
mask = mask.movedim(-1,1)
mask = common_upscale(mask, width=W, height=H, upscale_method=upscale_method, crop=crop)
mask = mask.movedim(1,-1)
if not add_channel_dim:
mask = mask.squeeze(-1)
if not allow_gradient:
mask = (mask > 0.5).float()
return mask
def validate_string(string: str, strip_whitespace=True, field_name="prompt", min_length=None, max_length=None):
if strip_whitespace:
string = string.strip()
if min_length and len(string) < min_length:
raise Exception(f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long.")
if max_length and len(string) > max_length:
raise Exception(f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long.")
if not string:
raise Exception(f"Field '{field_name}' cannot be empty.")

View File

@ -1,6 +1,6 @@
# generated by datamodel-codegen: # generated by datamodel-codegen:
# filename: https://api.comfy.org/openapi # filename: filtered-openapi.yaml
# timestamp: 2025-04-23T15:56:33+00:00 # timestamp: 2025-04-29T23:44:54+00:00
from __future__ import annotations from __future__ import annotations

View File

@ -1,12 +1,12 @@
# generated by datamodel-codegen: # generated by datamodel-codegen:
# filename: https://api.comfy.org/openapi # filename: filtered-openapi.yaml
# timestamp: 2025-04-23T15:56:33+00:00 # timestamp: 2025-04-29T23:44:54+00:00
from __future__ import annotations from __future__ import annotations
from typing import Optional from typing import Optional
from pydantic import BaseModel, Field, constr from pydantic import BaseModel, Field
class V2OpenAPII2VResp(BaseModel): class V2OpenAPII2VResp(BaseModel):
@ -30,10 +30,10 @@ class V2OpenAPIT2VReq(BaseModel):
description='Motion mode (normal, fast, --fast only available when duration=5; --quality=1080p does not support fast)', description='Motion mode (normal, fast, --fast only available when duration=5; --quality=1080p does not support fast)',
examples=['normal'], examples=['normal'],
) )
negative_prompt: Optional[constr(max_length=2048)] = Field( negative_prompt: Optional[str] = Field(
None, description='Negative prompt\n' None, description='Negative prompt\n', max_length=2048
) )
prompt: constr(max_length=2048) = Field(..., description='Prompt') prompt: str = Field(..., description='Prompt', max_length=2048)
quality: str = Field( quality: str = Field(
..., ...,
description='Video quality ("360p"(Turbo model), "540p", "720p", "1080p")', description='Video quality ("360p"(Turbo model), "540p", "720p", "1080p")',

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,156 @@
from __future__ import annotations
from enum import Enum
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, confloat, conint
class BFLOutputFormat(str, Enum):
png = 'png'
jpeg = 'jpeg'
class BFLFluxExpandImageRequest(BaseModel):
prompt: str = Field(..., description='The description of the changes you want to make. This text guides the expansion process, allowing you to specify features, styles, or modifications for the expanded areas.')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
top: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the top of the image')
bottom: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the bottom of the image')
left: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the left side of the image')
right: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the right side of the image')
steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process')
guidance: confloat(ge=1.5, le=100) = Field(..., description='Guidance strength for the image generation process')
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
image: str = Field(None, description='A Base64-encoded string representing the image you wish to expand')
class BFLFluxFillImageRequest(BaseModel):
prompt: str = Field(..., description='The description of the changes you want to make. This text guides the expansion process, allowing you to specify features, styles, or modifications for the expanded areas.')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process')
guidance: confloat(ge=1.5, le=100) = Field(..., description='Guidance strength for the image generation process')
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
image: str = Field(None, description='A Base64-encoded string representing the image you wish to modify. Can contain alpha mask if desired.')
mask: str = Field(None, description='A Base64-encoded string representing the mask of the areas you with to modify.')
class BFLFluxCannyImageRequest(BaseModel):
prompt: str = Field(..., description='Text prompt for image generation')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
canny_low_threshold: Optional[int] = Field(None, description='Low threshold for Canny edge detection')
canny_high_threshold: Optional[int] = Field(None, description='High threshold for Canny edge detection')
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process')
guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process')
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided')
preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step')
class BFLFluxDepthImageRequest(BaseModel):
prompt: str = Field(..., description='Text prompt for image generation')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process')
guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process')
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided')
preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step')
class BFLFluxProGenerateRequest(BaseModel):
prompt: str = Field(..., description='The text prompt for image generation.')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
width: conint(ge=256, le=1440) = Field(1024, description='Width of the generated image in pixels. Must be a multiple of 32.')
height: conint(ge=256, le=1440) = Field(768, description='Height of the generated image in pixels. Must be a multiple of 32.')
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
image_prompt: Optional[str] = Field(None, description='Optional image to remix in base64 format')
# image_prompt_strength: Optional[confloat(ge=0.0, le=1.0)] = Field(
# None, description='Blend between the prompt and the image prompt.'
# )
class BFLFluxProUltraGenerateRequest(BaseModel):
prompt: str = Field(..., description='The text prompt for image generation.')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
aspect_ratio: Optional[str] = Field(None, description='Aspect ratio of the image between 21:9 and 9:21.')
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
raw: Optional[bool] = Field(None, description='Generate less processed, more natural-looking images.')
image_prompt: Optional[str] = Field(None, description='Optional image to remix in base64 format')
image_prompt_strength: Optional[confloat(ge=0.0, le=1.0)] = Field(
None, description='Blend between the prompt and the image prompt.'
)
class BFLFluxProGenerateResponse(BaseModel):
id: str = Field(..., description='The unique identifier for the generation task.')
polling_url: str = Field(..., description='URL to poll for the generation result.')
class BFLStatus(str, Enum):
task_not_found = "Task not found"
pending = "Pending"
request_moderated = "Request Moderated"
content_moderated = "Content Moderated"
ready = "Ready"
error = "Error"
class BFLFluxProStatusResponse(BaseModel):
id: str = Field(..., description="The unique identifier for the generation task.")
status: BFLStatus = Field(..., description="The status of the task.")
result: Optional[Dict[str, Any]] = Field(
None, description="The result of the task (null if not completed)."
)
progress: confloat(ge=0.0, le=1.0) = Field(
..., description="The progress of the task (0.0 to 1.0)."
)
details: Optional[Dict[str, Any]] = Field(
None, description="Additional details about the task (null if not available)."
)

View File

@ -1,5 +1,3 @@
import logging
""" """
API Client Framework for api.comfy.org. API Client Framework for api.comfy.org.
@ -46,24 +44,71 @@ operation = ApiOperation(
) )
user_profile = operation.execute(client=api_client) # Returns immediately with the result user_profile = operation.execute(client=api_client) # Returns immediately with the result
# Example 2: Asynchronous API Operation with Polling
# -------------------------------------------------
# For an API that starts a task and requires polling for completion:
# 1. Define the endpoints (initial request and polling)
generate_image_endpoint = ApiEndpoint(
path="/v1/images/generate",
method=HttpMethod.POST,
request_model=ImageGenerationRequest,
response_model=TaskCreatedResponse,
query_params=None
)
check_task_endpoint = ApiEndpoint(
path="/v1/tasks/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=ImageGenerationResult,
query_params=None
)
# 2. Create the request object
request = ImageGenerationRequest(
prompt="a beautiful sunset over mountains",
width=1024,
height=1024,
num_images=1
)
# 3. Create and execute the polling operation
operation = PollingOperation(
initial_endpoint=generate_image_endpoint,
initial_request=request,
poll_endpoint=check_task_endpoint,
task_id_field="task_id",
status_field="status",
completed_statuses=["completed"],
failed_statuses=["failed", "error"]
)
# This will make the initial request and then poll until completion
result = operation.execute(client=api_client) # Returns the final ImageGenerationResult when done
""" """
from typing import ( from __future__ import annotations
Dict, import logging
Type, import time
Optional, import io
Any, from typing import Dict, Type, Optional, Any, TypeVar, Generic, Callable
TypeVar,
Generic,
)
from pydantic import BaseModel
from enum import Enum from enum import Enum
import json import json
import requests import requests
from urllib.parse import urljoin from urllib.parse import urljoin
from pydantic import BaseModel, Field
from comfy.cli_args import args
from comfy import utils
T = TypeVar("T", bound=BaseModel) T = TypeVar("T", bound=BaseModel)
R = TypeVar("R", bound=BaseModel) R = TypeVar("R", bound=BaseModel)
P = TypeVar("P", bound=BaseModel) # For poll response
PROGRESS_BAR_MAX = 100
class EmptyRequest(BaseModel): class EmptyRequest(BaseModel):
"""Base class for empty request bodies. """Base class for empty request bodies.
@ -72,6 +117,19 @@ class EmptyRequest(BaseModel):
pass pass
class UploadRequest(BaseModel):
file_name: str = Field(..., description="Filename to upload")
content_type: str | None = Field(
None,
description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.",
)
class UploadResponse(BaseModel):
download_url: str = Field(..., description="URL to GET uploaded file")
upload_url: str = Field(..., description="URL to PUT file to upload")
class HttpMethod(str, Enum): class HttpMethod(str, Enum):
GET = "GET" GET = "GET"
POST = "POST" POST = "POST"
@ -89,7 +147,7 @@ class ApiClient:
self, self,
base_url: str, base_url: str,
api_key: Optional[str] = None, api_key: Optional[str] = None,
timeout: float = 30.0, timeout: float = 3600.0,
verify_ssl: bool = True, verify_ssl: bool = True,
): ):
self.base_url = base_url self.base_url = base_url
@ -97,6 +155,48 @@ class ApiClient:
self.timeout = timeout self.timeout = timeout
self.verify_ssl = verify_ssl self.verify_ssl = verify_ssl
def _create_json_payload_args(
self,
data: Optional[Dict[str, Any]] = None,
headers: Optional[Dict[str, str]] = None,
) -> Dict[str, Any]:
return {
"json": data,
"headers": headers,
}
def _create_form_data_args(
self,
data: Dict[str, Any],
files: Dict[str, Any],
headers: Optional[Dict[str, str]] = None,
multipart_parser = None,
) -> Dict[str, Any]:
if headers and "Content-Type" in headers:
del headers["Content-Type"]
if multipart_parser:
data = multipart_parser(data)
return {
"data": data,
"files": files,
"headers": headers,
}
def _create_urlencoded_form_data_args(
self,
data: Dict[str, Any],
headers: Optional[Dict[str, str]] = None,
) -> Dict[str, Any]:
headers = headers or {}
headers["Content-Type"] = "application/x-www-form-urlencoded"
return {
"data": data,
"headers": headers,
}
def get_headers(self) -> Dict[str, str]: def get_headers(self) -> Dict[str, str]:
"""Get headers for API requests, including authentication if available""" """Get headers for API requests, including authentication if available"""
headers = {"Content-Type": "application/json", "Accept": "application/json"} headers = {"Content-Type": "application/json", "Accept": "application/json"}
@ -111,9 +211,11 @@ class ApiClient:
method: str, method: str,
path: str, path: str,
params: Optional[Dict[str, Any]] = None, params: Optional[Dict[str, Any]] = None,
json: Optional[Dict[str, Any]] = None, data: Optional[Dict[str, Any]] = None,
files: Optional[Dict[str, Any]] = None, files: Optional[Dict[str, Any]] = None,
headers: Optional[Dict[str, str]] = None, headers: Optional[Dict[str, str]] = None,
content_type: str = "application/json",
multipart_parser: Callable = None,
) -> Dict[str, Any]: ) -> Dict[str, Any]:
""" """
Make an HTTP request to the API Make an HTTP request to the API
@ -122,9 +224,10 @@ class ApiClient:
method: HTTP method (GET, POST, etc.) method: HTTP method (GET, POST, etc.)
path: API endpoint path (will be joined with base_url) path: API endpoint path (will be joined with base_url)
params: Query parameters params: Query parameters
json: JSON body data data: body data
files: Files to upload files: Files to upload
headers: Additional headers headers: Additional headers
content_type: Content type of the request. Defaults to application/json.
Returns: Returns:
Parsed JSON response Parsed JSON response
@ -146,34 +249,26 @@ class ApiClient:
logging.debug(f"[DEBUG] Request Headers: {request_headers}") logging.debug(f"[DEBUG] Request Headers: {request_headers}")
logging.debug(f"[DEBUG] Files: {files}") logging.debug(f"[DEBUG] Files: {files}")
logging.debug(f"[DEBUG] Params: {params}") logging.debug(f"[DEBUG] Params: {params}")
logging.debug(f"[DEBUG] Json: {json}") logging.debug(f"[DEBUG] Data: {data}")
if content_type == "application/x-www-form-urlencoded":
payload_args = self._create_urlencoded_form_data_args(data, request_headers)
elif content_type == "multipart/form-data":
payload_args = self._create_form_data_args(
data, files, request_headers, multipart_parser
)
else:
payload_args = self._create_json_payload_args(data, request_headers)
try: try:
# If files are present, use data parameter instead of json response = requests.request(
if files: method=method,
form_data = {} url=url,
if json: params=params,
form_data.update(json) timeout=self.timeout,
response = requests.request( verify=self.verify_ssl,
method=method, **payload_args,
url=url, )
params=params,
data=form_data, # Use data instead of json
files=files,
headers=request_headers,
timeout=self.timeout,
verify=self.verify_ssl,
)
else:
response = requests.request(
method=method,
url=url,
params=params,
json=json,
headers=request_headers,
timeout=self.timeout,
verify=self.verify_ssl,
)
# Raise exception for error status codes # Raise exception for error status codes
response.raise_for_status() response.raise_for_status()
@ -203,7 +298,9 @@ class ApiClient:
error_message = f"API Error: {error_json}" error_message = f"API Error: {error_json}"
except Exception as json_error: except Exception as json_error:
# If we can't parse the JSON, fall back to the original error message # If we can't parse the JSON, fall back to the original error message
logging.debug(f"[DEBUG] Failed to parse error response: {str(json_error)}") logging.debug(
f"[DEBUG] Failed to parse error response: {str(json_error)}"
)
logging.debug(f"[DEBUG] API Error: {error_message} (Status: {status_code})") logging.debug(f"[DEBUG] API Error: {error_message} (Status: {status_code})")
if hasattr(e, "response") and e.response.content: if hasattr(e, "response") and e.response.content:
@ -229,6 +326,32 @@ class ApiClient:
raise Exception("Unauthorized: Please login first to use this node.") raise Exception("Unauthorized: Please login first to use this node.")
return auth_token return auth_token
@staticmethod
def upload_file(
upload_url: str,
file: io.BytesIO | str,
content_type: str | None = None,
):
"""Upload a file to the API. Make sure the file has a filename equal to what the url expects.
Args:
upload_url: The URL to upload to
file: Either a file path string, BytesIO object, or tuple of (file_path, filename)
mime_type: Optional mime type to set for the upload
"""
headers = {}
if content_type:
headers["Content-Type"] = content_type
if isinstance(file, io.BytesIO):
file.seek(0) # Ensure we're at the start of the file
data = file.read()
return requests.put(upload_url, data=data, headers=headers)
elif isinstance(file, str):
with open(file, "rb") as f:
data = f.read()
return requests.put(upload_url, data=data, headers=headers)
class ApiEndpoint(Generic[T, R]): class ApiEndpoint(Generic[T, R]):
"""Defines an API endpoint with its request and response types""" """Defines an API endpoint with its request and response types"""
@ -267,27 +390,29 @@ class SynchronousOperation(Generic[T, R]):
endpoint: ApiEndpoint[T, R], endpoint: ApiEndpoint[T, R],
request: T, request: T,
files: Optional[Dict[str, Any]] = None, files: Optional[Dict[str, Any]] = None,
api_base: str = "https://api.comfy.org", api_base: str | None = None,
auth_token: Optional[str] = None, auth_token: Optional[str] = None,
timeout: float = 604800.0, timeout: float = 604800.0,
verify_ssl: bool = True, verify_ssl: bool = True,
content_type: str = "application/json",
multipart_parser: Callable = None,
): ):
self.endpoint = endpoint self.endpoint = endpoint
self.request = request self.request = request
self.response = None self.response = None
self.error = None self.error = None
self.api_base = api_base self.api_base: str = api_base or args.comfy_api_base
self.auth_token = auth_token self.auth_token = auth_token
self.timeout = timeout self.timeout = timeout
self.verify_ssl = verify_ssl self.verify_ssl = verify_ssl
self.files = files self.files = files
self.content_type = content_type
self.multipart_parser = multipart_parser
def execute(self, client: Optional[ApiClient] = None) -> R: def execute(self, client: Optional[ApiClient] = None) -> R:
"""Execute the API operation using the provided client or create one""" """Execute the API operation using the provided client or create one"""
try: try:
# Create client if not provided # Create client if not provided
if client is None: if client is None:
if self.api_base is None:
raise ValueError("Either client or api_base must be provided")
client = ApiClient( client = ApiClient(
base_url=self.api_base, base_url=self.api_base,
api_key=self.auth_token, api_key=self.auth_token,
@ -296,14 +421,25 @@ class SynchronousOperation(Generic[T, R]):
) )
# Convert request model to dict, but use None for EmptyRequest # Convert request model to dict, but use None for EmptyRequest
request_dict = None if isinstance(self.request, EmptyRequest) else self.request.model_dump(exclude_none=True) request_dict = (
None
if isinstance(self.request, EmptyRequest)
else self.request.model_dump(exclude_none=True)
)
if request_dict: if request_dict:
for key, value in request_dict.items(): for key, value in request_dict.items():
if isinstance(value, Enum): if isinstance(value, Enum):
request_dict[key] = value.value request_dict[key] = value.value
if request_dict:
for key, value in request_dict.items():
if isinstance(value, Enum):
request_dict[key] = value.value
# Debug log for request # Debug log for request
logging.debug(f"[DEBUG] API Request: {self.endpoint.method.value} {self.endpoint.path}") logging.debug(
f"[DEBUG] API Request: {self.endpoint.method.value} {self.endpoint.path}"
)
logging.debug(f"[DEBUG] Request Data: {json.dumps(request_dict, indent=2)}") logging.debug(f"[DEBUG] Request Data: {json.dumps(request_dict, indent=2)}")
logging.debug(f"[DEBUG] Query Params: {self.endpoint.query_params}") logging.debug(f"[DEBUG] Query Params: {self.endpoint.query_params}")
@ -311,9 +447,11 @@ class SynchronousOperation(Generic[T, R]):
resp = client.request( resp = client.request(
method=self.endpoint.method.value, method=self.endpoint.method.value,
path=self.endpoint.path, path=self.endpoint.path,
json=request_dict, data=request_dict,
params=self.endpoint.query_params, params=self.endpoint.query_params,
files=self.files, files=self.files,
content_type=self.content_type,
multipart_parser=self.multipart_parser
) )
# Debug log for response # Debug log for response
@ -327,7 +465,7 @@ class SynchronousOperation(Generic[T, R]):
return self._parse_response(resp) return self._parse_response(resp)
except Exception as e: except Exception as e:
logging.debug(f"[DEBUG] API Exception: {str(e)}") logging.error(f"[DEBUG] API Exception: {str(e)}")
raise Exception(str(e)) raise Exception(str(e))
def _parse_response(self, resp): def _parse_response(self, resp):
@ -339,3 +477,140 @@ class SynchronousOperation(Generic[T, R]):
self.response = self.endpoint.response_model.model_validate(resp) self.response = self.endpoint.response_model.model_validate(resp)
logging.debug(f"[DEBUG] Parsed Response: {self.response}") logging.debug(f"[DEBUG] Parsed Response: {self.response}")
return self.response return self.response
class TaskStatus(str, Enum):
"""Enum for task status values"""
COMPLETED = "completed"
FAILED = "failed"
PENDING = "pending"
class PollingOperation(Generic[T, R]):
"""
Represents an asynchronous API operation that requires polling for completion.
"""
def __init__(
self,
poll_endpoint: ApiEndpoint[EmptyRequest, R],
completed_statuses: list,
failed_statuses: list,
status_extractor: Callable[[R], str],
progress_extractor: Callable[[R], float] = None,
request: Optional[T] = None,
api_base: str | None = None,
auth_token: Optional[str] = None,
poll_interval: float = 5.0,
):
self.poll_endpoint = poll_endpoint
self.request = request
self.api_base: str = api_base or args.comfy_api_base
self.auth_token = auth_token
self.poll_interval = poll_interval
# Polling configuration
self.status_extractor = status_extractor or (
lambda x: getattr(x, "status", None)
)
self.progress_extractor = progress_extractor
self.completed_statuses = completed_statuses
self.failed_statuses = failed_statuses
# For storing response data
self.final_response = None
self.error = None
def execute(self, client: Optional[ApiClient] = None) -> R:
"""Execute the polling operation using the provided client. If failed, raise an exception."""
try:
if client is None:
client = ApiClient(
base_url=self.api_base,
api_key=self.auth_token,
)
return self._poll_until_complete(client)
except Exception as e:
raise Exception(f"Error during polling: {str(e)}")
def _check_task_status(self, response: R) -> TaskStatus:
"""Check task status using the status extractor function"""
try:
status = self.status_extractor(response)
if status in self.completed_statuses:
return TaskStatus.COMPLETED
elif status in self.failed_statuses:
return TaskStatus.FAILED
return TaskStatus.PENDING
except Exception as e:
logging.error(f"Error extracting status: {e}")
return TaskStatus.PENDING
def _poll_until_complete(self, client: ApiClient) -> R:
"""Poll until the task is complete"""
poll_count = 0
if self.progress_extractor:
progress = utils.ProgressBar(PROGRESS_BAR_MAX)
while True:
try:
poll_count += 1
logging.debug(f"[DEBUG] Polling attempt #{poll_count}")
request_dict = (
self.request.model_dump(exclude_none=True)
if self.request is not None
else None
)
if poll_count == 1:
logging.debug(
f"[DEBUG] Poll Request: {self.poll_endpoint.method.value} {self.poll_endpoint.path}"
)
logging.debug(
f"[DEBUG] Poll Request Data: {json.dumps(request_dict, indent=2) if request_dict else 'None'}"
)
# Query task status
resp = client.request(
method=self.poll_endpoint.method.value,
path=self.poll_endpoint.path,
params=self.poll_endpoint.query_params,
data=request_dict,
)
# Parse response
response_obj = self.poll_endpoint.response_model.model_validate(resp)
# Check if task is complete
status = self._check_task_status(response_obj)
logging.debug(f"[DEBUG] Task Status: {status}")
# If progress extractor is provided, extract progress
if self.progress_extractor:
new_progress = self.progress_extractor(response_obj)
if new_progress is not None:
progress.update_absolute(new_progress, total=PROGRESS_BAR_MAX)
if status == TaskStatus.COMPLETED:
logging.debug("[DEBUG] Task completed successfully")
self.final_response = response_obj
if self.progress_extractor:
progress.update(100)
return self.final_response
elif status == TaskStatus.FAILED:
message = f"Task failed: {json.dumps(resp)}"
logging.error(f"[DEBUG] {message}")
raise Exception(message)
else:
logging.debug("[DEBUG] Task still pending, continuing to poll...")
# Wait before polling again
logging.debug(
f"[DEBUG] Waiting {self.poll_interval} seconds before next poll"
)
time.sleep(self.poll_interval)
except Exception as e:
logging.error(f"[DEBUG] Polling error: {str(e)}")
raise Exception(f"Error while polling: {str(e)}")

View File

@ -0,0 +1,253 @@
from __future__ import annotations
import torch
from enum import Enum
from typing import Optional, Union
from pydantic import BaseModel, Field, confloat
class LumaIO:
LUMA_REF = "LUMA_REF"
LUMA_CONCEPTS = "LUMA_CONCEPTS"
class LumaReference:
def __init__(self, image: torch.Tensor, weight: float):
self.image = image
self.weight = weight
def create_api_model(self, download_url: str):
return LumaImageRef(url=download_url, weight=self.weight)
class LumaReferenceChain:
def __init__(self, first_ref: LumaReference=None):
self.refs: list[LumaReference] = []
if first_ref:
self.refs.append(first_ref)
def add(self, luma_ref: LumaReference=None):
self.refs.append(luma_ref)
def create_api_model(self, download_urls: list[str], max_refs=4):
if len(self.refs) == 0:
return None
api_refs: list[LumaImageRef] = []
for ref, url in zip(self.refs, download_urls):
api_ref = LumaImageRef(url=url, weight=ref.weight)
api_refs.append(api_ref)
return api_refs
def clone(self):
c = LumaReferenceChain()
for ref in self.refs:
c.add(ref)
return c
class LumaConcept:
def __init__(self, key: str):
self.key = key
class LumaConceptChain:
def __init__(self, str_list: list[str] = None):
self.concepts: list[LumaConcept] = []
if str_list is not None:
for c in str_list:
if c != "None":
self.add(LumaConcept(key=c))
def add(self, concept: LumaConcept):
self.concepts.append(concept)
def create_api_model(self):
if len(self.concepts) == 0:
return None
api_concepts: list[LumaConceptObject] = []
for concept in self.concepts:
if concept.key == "None":
continue
api_concepts.append(LumaConceptObject(key=concept.key))
if len(api_concepts) == 0:
return None
return api_concepts
def clone(self):
c = LumaConceptChain()
for concept in self.concepts:
c.add(concept)
return c
def clone_and_merge(self, other: LumaConceptChain):
c = self.clone()
for concept in other.concepts:
c.add(concept)
return c
def get_luma_concepts(include_none=False):
concepts = []
if include_none:
concepts.append("None")
return concepts + [
"truck_left",
"pan_right",
"pedestal_down",
"low_angle",
"pedestal_up",
"selfie",
"pan_left",
"roll_right",
"zoom_in",
"over_the_shoulder",
"orbit_right",
"orbit_left",
"static",
"tiny_planet",
"high_angle",
"bolt_cam",
"dolly_zoom",
"overhead",
"zoom_out",
"handheld",
"roll_left",
"pov",
"aerial_drone",
"push_in",
"crane_down",
"truck_right",
"tilt_down",
"elevator_doors",
"tilt_up",
"ground_level",
"pull_out",
"aerial",
"crane_up",
"eye_level"
]
class LumaImageModel(str, Enum):
photon_1 = "photon-1"
photon_flash_1 = "photon-flash-1"
class LumaVideoModel(str, Enum):
ray_2 = "ray-2"
ray_flash_2 = "ray-flash-2"
ray_1_6 = "ray-1-6"
class LumaAspectRatio(str, Enum):
ratio_1_1 = "1:1"
ratio_16_9 = "16:9"
ratio_9_16 = "9:16"
ratio_4_3 = "4:3"
ratio_3_4 = "3:4"
ratio_21_9 = "21:9"
ratio_9_21 = "9:21"
class LumaVideoOutputResolution(str, Enum):
res_540p = "540p"
res_720p = "720p"
res_1080p = "1080p"
res_4k = "4k"
class LumaVideoModelOutputDuration(str, Enum):
dur_5s = "5s"
dur_9s = "9s"
class LumaGenerationType(str, Enum):
video = 'video'
image = 'image'
class LumaState(str, Enum):
queued = "queued"
dreaming = "dreaming"
completed = "completed"
failed = "failed"
class LumaAssets(BaseModel):
video: Optional[str] = Field(None, description='The URL of the video')
image: Optional[str] = Field(None, description='The URL of the image')
progress_video: Optional[str] = Field(None, description='The URL of the progress video')
class LumaImageRef(BaseModel):
'''Used for image gen'''
url: str = Field(..., description='The URL of the image reference')
weight: confloat(ge=0.0, le=1.0) = Field(..., description='The weight of the image reference')
class LumaImageReference(BaseModel):
'''Used for video gen'''
type: Optional[str] = Field('image', description='Input type, defaults to image')
url: str = Field(..., description='The URL of the image')
class LumaModifyImageRef(BaseModel):
url: str = Field(..., description='The URL of the image reference')
weight: confloat(ge=0.0, le=1.0) = Field(..., description='The weight of the image reference')
class LumaCharacterRef(BaseModel):
identity0: LumaImageIdentity = Field(..., description='The image identity object')
class LumaImageIdentity(BaseModel):
images: list[str] = Field(..., description='The URLs of the image identity')
class LumaGenerationReference(BaseModel):
type: str = Field('generation', description='Input type, defaults to generation')
id: str = Field(..., description='The ID of the generation')
class LumaKeyframes(BaseModel):
frame0: Optional[Union[LumaImageReference, LumaGenerationReference]] = Field(None, description='')
frame1: Optional[Union[LumaImageReference, LumaGenerationReference]] = Field(None, description='')
class LumaConceptObject(BaseModel):
key: str = Field(..., description='Camera Concept name')
class LumaImageGenerationRequest(BaseModel):
prompt: str = Field(..., description='The prompt of the generation')
model: LumaImageModel = Field(LumaImageModel.photon_1, description='The image model used for the generation')
aspect_ratio: Optional[LumaAspectRatio] = Field(LumaAspectRatio.ratio_16_9, description='The aspect ratio of the generation')
image_ref: Optional[list[LumaImageRef]] = Field(None, description='List of image reference objects')
style_ref: Optional[list[LumaImageRef]] = Field(None, description='List of style reference objects')
character_ref: Optional[LumaCharacterRef] = Field(None, description='The image identity object')
modify_image_ref: Optional[LumaModifyImageRef] = Field(None, description='The modify image reference object')
class LumaGenerationRequest(BaseModel):
prompt: str = Field(..., description='The prompt of the generation')
model: LumaVideoModel = Field(LumaVideoModel.ray_2, description='The video model used for the generation')
duration: Optional[LumaVideoModelOutputDuration] = Field(None, description='The duration of the generation')
aspect_ratio: Optional[LumaAspectRatio] = Field(None, description='The aspect ratio of the generation')
resolution: Optional[LumaVideoOutputResolution] = Field(None, description='The resolution of the generation')
loop: Optional[bool] = Field(None, description='Whether to loop the video')
keyframes: Optional[LumaKeyframes] = Field(None, description='The keyframes of the generation')
concepts: Optional[list[LumaConceptObject]] = Field(None, description='Camera Concepts to apply to generation')
class LumaGeneration(BaseModel):
id: str = Field(..., description='The ID of the generation')
generation_type: LumaGenerationType = Field(..., description='Generation type, image or video')
state: LumaState = Field(..., description='The state of the generation')
failure_reason: Optional[str] = Field(None, description='The reason for the state of the generation')
created_at: str = Field(..., description='The date and time when the generation was created')
assets: Optional[LumaAssets] = Field(None, description='The assets of the generation')
model: str = Field(..., description='The model used for the generation')
request: Union[LumaGenerationRequest, LumaImageGenerationRequest] = Field(..., description="The request used for the generation")

View File

@ -0,0 +1,146 @@
from __future__ import annotations
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field
pixverse_templates = {
"Microwave": 324641385496960,
"Suit Swagger": 328545151283968,
"Anything, Robot": 313358700761536,
"Subject 3 Fever": 327828816843648,
"kiss kiss": 315446315336768,
}
class PixverseIO:
TEMPLATE = "PIXVERSE_TEMPLATE"
class PixverseStatus(int, Enum):
successful = 1
generating = 5
deleted = 6
contents_moderation = 7
failed = 8
class PixverseAspectRatio(str, Enum):
ratio_16_9 = "16:9"
ratio_4_3 = "4:3"
ratio_1_1 = "1:1"
ratio_3_4 = "3:4"
ratio_9_16 = "9:16"
class PixverseQuality(str, Enum):
res_360p = "360p"
res_540p = "540p"
res_720p = "720p"
res_1080p = "1080p"
class PixverseDuration(int, Enum):
dur_5 = 5
dur_8 = 8
class PixverseMotionMode(str, Enum):
normal = "normal"
fast = "fast"
class PixverseStyle(str, Enum):
anime = "anime"
animation_3d = "3d_animation"
clay = "clay"
comic = "comic"
cyberpunk = "cyberpunk"
# NOTE: forgoing descriptions for now in return for dev speed
class PixverseTextVideoRequest(BaseModel):
aspect_ratio: PixverseAspectRatio = Field(...)
quality: PixverseQuality = Field(...)
duration: PixverseDuration = Field(...)
model: Optional[str] = Field("v3.5")
motion_mode: Optional[PixverseMotionMode] = Field(PixverseMotionMode.normal)
prompt: str = Field(...)
negative_prompt: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
style: Optional[str] = Field(None)
template_id: Optional[int] = Field(None)
water_mark: Optional[bool] = Field(None)
class PixverseImageVideoRequest(BaseModel):
quality: PixverseQuality = Field(...)
duration: PixverseDuration = Field(...)
img_id: int = Field(...)
model: Optional[str] = Field("v3.5")
motion_mode: Optional[PixverseMotionMode] = Field(PixverseMotionMode.normal)
prompt: str = Field(...)
negative_prompt: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
style: Optional[str] = Field(None)
template_id: Optional[int] = Field(None)
water_mark: Optional[bool] = Field(None)
class PixverseTransitionVideoRequest(BaseModel):
quality: PixverseQuality = Field(...)
duration: PixverseDuration = Field(...)
first_frame_img: int = Field(...)
last_frame_img: int = Field(...)
model: Optional[str] = Field("v3.5")
motion_mode: Optional[PixverseMotionMode] = Field(PixverseMotionMode.normal)
prompt: str = Field(...)
# negative_prompt: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
# style: Optional[str] = Field(None)
# template_id: Optional[int] = Field(None)
# water_mark: Optional[bool] = Field(None)
class PixverseImageUploadResponse(BaseModel):
ErrCode: Optional[int] = None
ErrMsg: Optional[str] = None
Resp: Optional[PixverseImgIdResponseObject] = Field(None, alias='Resp')
class PixverseImgIdResponseObject(BaseModel):
img_id: Optional[int] = None
class PixverseVideoResponse(BaseModel):
ErrCode: Optional[int] = Field(None)
ErrMsg: Optional[str] = Field(None)
Resp: Optional[PixverseVideoIdResponseObject] = Field(None)
class PixverseVideoIdResponseObject(BaseModel):
video_id: int = Field(..., description='Video_id')
class PixverseGenerationStatusResponse(BaseModel):
ErrCode: Optional[int] = Field(None)
ErrMsg: Optional[str] = Field(None)
Resp: Optional[PixverseGenerationStatusResponseObject] = Field(None)
class PixverseGenerationStatusResponseObject(BaseModel):
create_time: Optional[str] = Field(None)
id: Optional[int] = Field(None)
modify_time: Optional[str] = Field(None)
negative_prompt: Optional[str] = Field(None)
outputHeight: Optional[int] = Field(None)
outputWidth: Optional[int] = Field(None)
prompt: Optional[str] = Field(None)
resolution_ratio: Optional[int] = Field(None)
seed: Optional[int] = Field(None)
size: Optional[int] = Field(None)
status: Optional[int] = Field(None)
style: Optional[str] = Field(None)
url: Optional[str] = Field(None)

View File

@ -0,0 +1,263 @@
from __future__ import annotations
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field, conint, confloat
class RecraftColor:
def __init__(self, r: int, g: int, b: int):
self.color = [r, g, b]
def create_api_model(self):
return RecraftColorObject(rgb=self.color)
class RecraftColorChain:
def __init__(self):
self.colors: list[RecraftColor] = []
def get_first(self):
if len(self.colors) > 0:
return self.colors[0]
return None
def add(self, color: RecraftColor):
self.colors.append(color)
def create_api_model(self):
if not self.colors:
return None
colors_api = [x.create_api_model() for x in self.colors]
return colors_api
def clone(self):
c = RecraftColorChain()
for color in self.colors:
c.add(color)
return c
def clone_and_merge(self, other: RecraftColorChain):
c = self.clone()
for color in other.colors:
c.add(color)
return c
class RecraftControls:
def __init__(self, colors: RecraftColorChain=None, background_color: RecraftColorChain=None,
artistic_level: int=None, no_text: bool=None):
self.colors = colors
self.background_color = background_color
self.artistic_level = artistic_level
self.no_text = no_text
def create_api_model(self):
if self.colors is None and self.background_color is None and self.artistic_level is None and self.no_text is None:
return None
colors_api = None
background_color_api = None
if self.colors:
colors_api = self.colors.create_api_model()
if self.background_color:
first_background = self.background_color.get_first()
background_color_api = first_background.create_api_model() if first_background else None
return RecraftControlsObject(colors=colors_api, background_color=background_color_api,
artistic_level=self.artistic_level, no_text=self.no_text)
class RecraftStyle:
def __init__(self, style: str=None, substyle: str=None, style_id: str=None):
self.style = style
if substyle == "None":
substyle = None
self.substyle = substyle
self.style_id = style_id
class RecraftIO:
STYLEV3 = "RECRAFT_V3_STYLE"
SVG = "SVG" # TODO: if acceptable, move into ComfyUI's typing class
COLOR = "RECRAFT_COLOR"
CONTROLS = "RECRAFT_CONTROLS"
class RecraftStyleV3(str, Enum):
#any = 'any' NOTE: this does not work for some reason... why?
realistic_image = 'realistic_image'
digital_illustration = 'digital_illustration'
vector_illustration = 'vector_illustration'
logo_raster = 'logo_raster'
def get_v3_substyles(style_v3: str, include_none=True) -> list[str]:
substyles: list[str] = []
if include_none:
substyles.append("None")
return substyles + dict_recraft_substyles_v3.get(style_v3, [])
dict_recraft_substyles_v3 = {
RecraftStyleV3.realistic_image: [
"b_and_w",
"enterprise",
"evening_light",
"faded_nostalgia",
"forest_life",
"hard_flash",
"hdr",
"motion_blur",
"mystic_naturalism",
"natural_light",
"natural_tones",
"organic_calm",
"real_life_glow",
"retro_realism",
"retro_snapshot",
"studio_portrait",
"urban_drama",
"village_realism",
"warm_folk"
],
RecraftStyleV3.digital_illustration: [
"2d_art_poster",
"2d_art_poster_2",
"antiquarian",
"bold_fantasy",
"child_book",
"child_books",
"cover",
"crosshatch",
"digital_engraving",
"engraving_color",
"expressionism",
"freehand_details",
"grain",
"grain_20",
"graphic_intensity",
"hand_drawn",
"hand_drawn_outline",
"handmade_3d",
"hard_comics",
"infantile_sketch",
"long_shadow",
"modern_folk",
"multicolor",
"neon_calm",
"noir",
"nostalgic_pastel",
"outline_details",
"pastel_gradient",
"pastel_sketch",
"pixel_art",
"plastic",
"pop_art",
"pop_renaissance",
"seamless",
"street_art",
"tablet_sketch",
"urban_glow",
"urban_sketching",
"vanilla_dreams",
"young_adult_book",
"young_adult_book_2"
],
RecraftStyleV3.vector_illustration: [
"bold_stroke",
"chemistry",
"colored_stencil",
"contour_pop_art",
"cosmics",
"cutout",
"depressive",
"editorial",
"emotional_flat",
"engraving",
"infographical",
"line_art",
"line_circuit",
"linocut",
"marker_outline",
"mosaic",
"naivector",
"roundish_flat",
"seamless",
"segmented_colors",
"sharp_contrast",
"thin",
"vector_photo",
"vivid_shapes"
],
RecraftStyleV3.logo_raster: [
"emblem_graffiti",
"emblem_pop_art",
"emblem_punk",
"emblem_stamp",
"emblem_vintage"
],
}
class RecraftModel(str, Enum):
recraftv3 = 'recraftv3'
recraftv2 = 'recraftv2'
class RecraftImageSize(str, Enum):
res_1024x1024 = '1024x1024'
res_1365x1024 = '1365x1024'
res_1024x1365 = '1024x1365'
res_1536x1024 = '1536x1024'
res_1024x1536 = '1024x1536'
res_1820x1024 = '1820x1024'
res_1024x1820 = '1024x1820'
res_1024x2048 = '1024x2048'
res_2048x1024 = '2048x1024'
res_1434x1024 = '1434x1024'
res_1024x1434 = '1024x1434'
res_1024x1280 = '1024x1280'
res_1280x1024 = '1280x1024'
res_1024x1707 = '1024x1707'
res_1707x1024 = '1707x1024'
class RecraftColorObject(BaseModel):
rgb: list[int] = Field(..., description='An array of 3 integer values in range of 0...255 defining RGB Color Model')
class RecraftControlsObject(BaseModel):
colors: Optional[list[RecraftColorObject]] = Field(None, description='An array of preferable colors')
background_color: Optional[RecraftColorObject] = Field(None, description='Use given color as a desired background color')
no_text: Optional[bool] = Field(None, description='Do not embed text layouts')
artistic_level: Optional[conint(ge=0, le=5)] = Field(None, description='Defines artistic tone of your image. At a simple level, the person looks straight at the camera in a static and clean style. Dynamic and eccentric levels introduce movement and creativity. The value should be in range [0..5].')
class RecraftImageGenerationRequest(BaseModel):
prompt: str = Field(..., description='The text prompt describing the image to generate')
size: Optional[RecraftImageSize] = Field(None, description='The size of the generated image (e.g., "1024x1024")')
n: conint(ge=1, le=6) = Field(..., description='The number of images to generate')
negative_prompt: Optional[str] = Field(None, description='A text description of undesired elements on an image')
model: Optional[RecraftModel] = Field(RecraftModel.recraftv3, description='The model to use for generation (e.g., "recraftv3")')
style: Optional[str] = Field(None, description='The style to apply to the generated image (e.g., "digital_illustration")')
substyle: Optional[str] = Field(None, description='The substyle to apply to the generated image, depending on the style input')
controls: Optional[RecraftControlsObject] = Field(None, description='A set of custom parameters to tweak generation process')
style_id: Optional[str] = Field(None, description='Use a previously uploaded style as a reference; UUID')
strength: Optional[confloat(ge=0.0, le=1.0)] = Field(None, description='Defines the difference with the original image, should lie in [0, 1], where 0 means almost identical, and 1 means miserable similarity')
random_seed: Optional[int] = Field(None, description="Seed for video generation")
# text_layout
class RecraftReturnedObject(BaseModel):
image_id: str = Field(..., description='Unique identifier for the generated image')
url: str = Field(..., description='URL to access the generated image')
class RecraftImageGenerationResponse(BaseModel):
created: int = Field(..., description='Unix timestamp when the generation was created')
credits: int = Field(..., description='Number of credits used for the generation')
data: Optional[list[RecraftReturnedObject]] = Field(None, description='Array of generated image information')
image: Optional[RecraftReturnedObject] = Field(None, description='Single generated image')

View File

@ -0,0 +1,127 @@
from __future__ import annotations
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field, confloat
class StabilityFormat(str, Enum):
png = 'png'
jpeg = 'jpeg'
webp = 'webp'
class StabilityAspectRatio(str, Enum):
ratio_1_1 = "1:1"
ratio_16_9 = "16:9"
ratio_9_16 = "9:16"
ratio_3_2 = "3:2"
ratio_2_3 = "2:3"
ratio_5_4 = "5:4"
ratio_4_5 = "4:5"
ratio_21_9 = "21:9"
ratio_9_21 = "9:21"
def get_stability_style_presets(include_none=True):
presets = []
if include_none:
presets.append("None")
return presets + [x.value for x in StabilityStylePreset]
class StabilityStylePreset(str, Enum):
_3d_model = "3d-model"
analog_film = "analog-film"
anime = "anime"
cinematic = "cinematic"
comic_book = "comic-book"
digital_art = "digital-art"
enhance = "enhance"
fantasy_art = "fantasy-art"
isometric = "isometric"
line_art = "line-art"
low_poly = "low-poly"
modeling_compound = "modeling-compound"
neon_punk = "neon-punk"
origami = "origami"
photographic = "photographic"
pixel_art = "pixel-art"
tile_texture = "tile-texture"
class Stability_SD3_5_Model(str, Enum):
sd3_5_large = "sd3.5-large"
# sd3_5_large_turbo = "sd3.5-large-turbo"
sd3_5_medium = "sd3.5-medium"
class Stability_SD3_5_GenerationMode(str, Enum):
text_to_image = "text-to-image"
image_to_image = "image-to-image"
class StabilityStable3_5Request(BaseModel):
model: str = Field(...)
mode: str = Field(...)
prompt: str = Field(...)
negative_prompt: Optional[str] = Field(None)
aspect_ratio: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
output_format: Optional[str] = Field(StabilityFormat.png.value)
image: Optional[str] = Field(None)
style_preset: Optional[str] = Field(None)
cfg_scale: float = Field(...)
strength: Optional[confloat(ge=0.0, le=1.0)] = Field(None)
class StabilityUpscaleConservativeRequest(BaseModel):
prompt: str = Field(...)
negative_prompt: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
output_format: Optional[str] = Field(StabilityFormat.png.value)
image: Optional[str] = Field(None)
creativity: Optional[confloat(ge=0.2, le=0.5)] = Field(None)
class StabilityUpscaleCreativeRequest(BaseModel):
prompt: str = Field(...)
negative_prompt: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
output_format: Optional[str] = Field(StabilityFormat.png.value)
image: Optional[str] = Field(None)
creativity: Optional[confloat(ge=0.1, le=0.5)] = Field(None)
style_preset: Optional[str] = Field(None)
class StabilityStableUltraRequest(BaseModel):
prompt: str = Field(...)
negative_prompt: Optional[str] = Field(None)
aspect_ratio: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
output_format: Optional[str] = Field(StabilityFormat.png.value)
image: Optional[str] = Field(None)
style_preset: Optional[str] = Field(None)
strength: Optional[confloat(ge=0.0, le=1.0)] = Field(None)
class StabilityStableUltraResponse(BaseModel):
image: Optional[str] = Field(None)
finish_reason: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
class StabilityResultsGetResponse(BaseModel):
image: Optional[str] = Field(None)
finish_reason: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
id: Optional[str] = Field(None)
name: Optional[str] = Field(None)
errors: Optional[list[str]] = Field(None)
status: Optional[str] = Field(None)
result: Optional[str] = Field(None)
class StabilityAsyncResponse(BaseModel):
id: Optional[str] = Field(None)

View File

@ -0,0 +1,116 @@
from enum import Enum
from pydantic.fields import FieldInfo
from pydantic import BaseModel
from pydantic_core import PydanticUndefined
from comfy.comfy_types.node_typing import IO, InputTypeOptions
NodeInput = tuple[IO, InputTypeOptions]
def _create_base_config(field_info: FieldInfo) -> InputTypeOptions:
config = {}
if hasattr(field_info, "default") and field_info.default is not PydanticUndefined:
config["default"] = field_info.default
if hasattr(field_info, "description") and field_info.description is not None:
config["tooltip"] = field_info.description
return config
def _get_number_constraints_config(field_info: FieldInfo) -> dict:
config = {}
if hasattr(field_info, "metadata"):
metadata = field_info.metadata
for constraint in metadata:
if hasattr(constraint, "ge"):
config["min"] = constraint.ge
if hasattr(constraint, "le"):
config["max"] = constraint.le
if hasattr(constraint, "multiple_of"):
config["step"] = constraint.multiple_of
return config
def _model_field_to_image_input(field_info: FieldInfo, **kwargs) -> NodeInput:
return IO.IMAGE, {
**_create_base_config(field_info),
**kwargs,
}
def _model_field_to_string_input(field_info: FieldInfo, **kwargs) -> NodeInput:
return IO.STRING, {
**_create_base_config(field_info),
**kwargs,
}
def _model_field_to_float_input(field_info: FieldInfo, **kwargs) -> NodeInput:
return IO.FLOAT, {
**_create_base_config(field_info),
**_get_number_constraints_config(field_info),
**kwargs,
}
def _model_field_to_int_input(field_info: FieldInfo, **kwargs) -> NodeInput:
return IO.INT, {
**_create_base_config(field_info),
**_get_number_constraints_config(field_info),
**kwargs,
}
def _model_field_to_combo_input(
field_info: FieldInfo, enum_type: type[Enum] = None, **kwargs
) -> NodeInput:
combo_config = {}
if enum_type is not None:
combo_config["options"] = [option.value for option in enum_type]
combo_config = {
**combo_config,
**_create_base_config(field_info),
**kwargs,
}
return IO.COMBO, combo_config
def model_field_to_node_input(
input_type: IO, base_model: type[BaseModel], field_name: str, **kwargs
) -> NodeInput:
"""
Maps a field from a Pydantic model to a Comfy node input.
Args:
input_type: The type of the input.
base_model: The Pydantic model to map the field from.
field_name: The name of the field to map.
**kwargs: Additional key/values to include in the input options.
Note:
For combo inputs, pass an `Enum` to the `enum_type` keyword argument to populate the options automatically.
Example:
>>> model_field_to_node_input(IO.STRING, MyModel, "my_field", multiline=True)
>>> model_field_to_node_input(IO.COMBO, MyModel, "my_field", enum_type=MyEnum)
>>> model_field_to_node_input(IO.FLOAT, MyModel, "my_field", slider=True)
"""
field_info: FieldInfo = base_model.model_fields[field_name]
result: NodeInput
if input_type == IO.IMAGE:
result = _model_field_to_image_input(field_info, **kwargs)
elif input_type == IO.STRING:
result = _model_field_to_string_input(field_info, **kwargs)
elif input_type == IO.FLOAT:
result = _model_field_to_float_input(field_info, **kwargs)
elif input_type == IO.INT:
result = _model_field_to_int_input(field_info, **kwargs)
elif input_type == IO.COMBO:
result = _model_field_to_combo_input(field_info, **kwargs)
else:
message = f"Invalid input type: {input_type}"
raise ValueError(message)
return result

View File

@ -1,449 +0,0 @@
import base64
import io
import math
from inspect import cleandoc
import numpy as np
import requests
import torch
from PIL import Image
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from comfy.utils import common_upscale
from comfy_api_nodes.apis import (
OpenAIImageEditRequest,
OpenAIImageGenerationRequest,
OpenAIImageGenerationResponse,
)
from comfy_api_nodes.apis.client import ApiEndpoint, HttpMethod, SynchronousOperation
def downscale_input(image):
samples = image.movedim(-1,1)
#downscaling input images to roughly the same size as the outputs
total = int(1536 * 1024)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
if scale_by >= 1:
return image
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = common_upscale(samples, width, height, "lanczos", "disabled")
s = s.movedim(1,-1)
return s
def validate_and_cast_response(response):
# validate raw JSON response
data = response.data
if not data or len(data) == 0:
raise Exception("No images returned from API endpoint")
# Initialize list to store image tensors
image_tensors = []
# Process each image in the data array
for image_data in data:
image_url = image_data.url
b64_data = image_data.b64_json
if not image_url and not b64_data:
raise Exception("No image was generated in the response")
if b64_data:
img_data = base64.b64decode(b64_data)
img = Image.open(io.BytesIO(img_data))
elif image_url:
img_response = requests.get(image_url)
if img_response.status_code != 200:
raise Exception("Failed to download the image")
img = Image.open(io.BytesIO(img_response.content))
img = img.convert("RGBA")
# Convert to numpy array, normalize to float32 between 0 and 1
img_array = np.array(img).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_array)
# Add to list of tensors
image_tensors.append(img_tensor)
return torch.stack(image_tensors, dim=0)
class OpenAIDalle2(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's DALL·E 2 endpoint.
Uses the proxy at /proxy/openai/images/generations. Returned URLs are shortlived,
so download or cache results if you need to keep them.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (IO.STRING, {
"multiline": True,
"default": "",
"tooltip": "Text prompt for DALL·E",
}),
},
"optional": {
"seed": (IO.INT, {
"default": 0,
"min": 0,
"max": 2**31-1,
"step": 1,
"display": "number",
"tooltip": "not implemented yet in backend",
}),
"size": (IO.COMBO, {
"options": ["256x256", "512x512", "1024x1024"],
"default": "1024x1024",
"tooltip": "Image size",
}),
"n": (IO.INT, {
"default": 1,
"min": 1,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "How many images to generate",
}),
"image": (IO.IMAGE, {
"default": None,
"tooltip": "Optional reference image for image editing.",
}),
"mask": (IO.MASK, {
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG"
}
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(self, prompt, seed=0, image=None, mask=None, n=1, size="1024x1024", auth_token=None):
model = "dall-e-2"
path = "/proxy/openai/images/generations"
request_class = OpenAIImageGenerationRequest
img_binary = None
if image is not None and mask is not None:
path = "/proxy/openai/images/edits"
request_class = OpenAIImageEditRequest
input_tensor = image.squeeze().cpu()
height, width, channels = input_tensor.shape
rgba_tensor = torch.ones(height, width, 4, device="cpu")
rgba_tensor[:, :, :channels] = input_tensor
if mask.shape[1:] != image.shape[1:-1]:
raise Exception("Mask and Image must be the same size")
rgba_tensor[:,:,3] = (1-mask.squeeze().cpu())
rgba_tensor = downscale_input(rgba_tensor.unsqueeze(0)).squeeze()
image_np = (rgba_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
img_binary = img_byte_arr#.getvalue()
img_binary.name = "image.png"
elif image is not None or mask is not None:
raise Exception("Dall-E 2 image editing requires an image AND a mask")
# Build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=request_class,
response_model=OpenAIImageGenerationResponse
),
request=request_class(
model=model,
prompt=prompt,
n=n,
size=size,
seed=seed,
),
files={
"image": img_binary,
} if img_binary else None,
auth_token=auth_token
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
class OpenAIDalle3(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's DALL·E 3 endpoint.
Uses the proxy at /proxy/openai/images/generations. Returned URLs are shortlived,
so download or cache results if you need to keep them.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (IO.STRING, {
"multiline": True,
"default": "",
"tooltip": "Text prompt for DALL·E",
}),
},
"optional": {
"seed": (IO.INT, {
"default": 0,
"min": 0,
"max": 2**31-1,
"step": 1,
"display": "number",
"tooltip": "not implemented yet in backend",
}),
"quality" : (IO.COMBO, {
"options": ["standard","hd"],
"default": "standard",
"tooltip": "Image quality",
}),
"style": (IO.COMBO, {
"options": ["natural","vivid"],
"default": "natural",
"tooltip": "Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images.",
}),
"size": (IO.COMBO, {
"options": ["1024x1024", "1024x1792", "1792x1024"],
"default": "1024x1024",
"tooltip": "Image size",
}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG"
}
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(self, prompt, seed=0, style="natural", quality="standard", size="1024x1024", auth_token=None):
model = "dall-e-3"
# build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/openai/images/generations",
method=HttpMethod.POST,
request_model=OpenAIImageGenerationRequest,
response_model=OpenAIImageGenerationResponse
),
request=OpenAIImageGenerationRequest(
model=model,
prompt=prompt,
quality=quality,
size=size,
style=style,
seed=seed,
),
auth_token=auth_token
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
class OpenAIGPTImage1(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's GPT Image 1 endpoint.
Uses the proxy at /proxy/openai/images/generations. Returned URLs are shortlived,
so download or cache results if you need to keep them.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (IO.STRING, {
"multiline": True,
"default": "",
"tooltip": "Text prompt for GPT Image 1",
}),
},
"optional": {
"seed": (IO.INT, {
"default": 0,
"min": 0,
"max": 2**31-1,
"step": 1,
"display": "number",
"tooltip": "not implemented yet in backend",
}),
"quality": (IO.COMBO, {
"options": ["low","medium","high"],
"default": "low",
"tooltip": "Image quality, affects cost and generation time.",
}),
"background": (IO.COMBO, {
"options": ["opaque","transparent"],
"default": "opaque",
"tooltip": "Return image with or without background",
}),
"size": (IO.COMBO, {
"options": ["auto", "1024x1024", "1024x1536", "1536x1024"],
"default": "auto",
"tooltip": "Image size",
}),
"n": (IO.INT, {
"default": 1,
"min": 1,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "How many images to generate",
}),
"image": (IO.IMAGE, {
"default": None,
"tooltip": "Optional reference image for image editing.",
}),
"mask": (IO.MASK, {
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
}),
"moderation": (IO.COMBO, {
"options": ["low","auto"],
"default": "low",
"tooltip": "Moderation level",
}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG"
}
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(self, prompt, seed=0, quality="low", background="opaque", image=None, mask=None, n=1, size="1024x1024", auth_token=None, moderation="low"):
model = "gpt-image-1"
path = "/proxy/openai/images/generations"
request_class = OpenAIImageGenerationRequest
img_binaries = []
mask_binary = None
files = []
if image is not None:
path = "/proxy/openai/images/edits"
request_class = OpenAIImageEditRequest
batch_size = image.shape[0]
for i in range(batch_size):
single_image = image[i:i+1]
scaled_image = downscale_input(single_image).squeeze()
image_np = (scaled_image.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
img_binary = img_byte_arr
img_binary.name = f"image_{i}.png"
img_binaries.append(img_binary)
if batch_size == 1:
files.append(("image", img_binary))
else:
files.append(("image[]", img_binary))
if mask is not None:
if image.shape[0] != 1:
raise Exception("Cannot use a mask with multiple image")
if image is None:
raise Exception("Cannot use a mask without an input image")
if mask.shape[1:] != image.shape[1:-1]:
raise Exception("Mask and Image must be the same size")
batch, height, width = mask.shape
rgba_mask = torch.zeros(height, width, 4, device="cpu")
rgba_mask[:,:,3] = (1-mask.squeeze().cpu())
scaled_mask = downscale_input(rgba_mask.unsqueeze(0)).squeeze()
mask_np = (scaled_mask.numpy() * 255).astype(np.uint8)
mask_img = Image.fromarray(mask_np)
mask_img_byte_arr = io.BytesIO()
mask_img.save(mask_img_byte_arr, format='PNG')
mask_img_byte_arr.seek(0)
mask_binary = mask_img_byte_arr
mask_binary.name = "mask.png"
files.append(("mask", mask_binary))
# Build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=request_class,
response_model=OpenAIImageGenerationResponse
),
request=request_class(
model=model,
prompt=prompt,
quality=quality,
background=background,
n=n,
seed=seed,
size=size,
moderation=moderation,
),
files=files if files else None,
auth_token=auth_token
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"OpenAIDalle2": OpenAIDalle2,
"OpenAIDalle3": OpenAIDalle3,
"OpenAIGPTImage1": OpenAIGPTImage1,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"OpenAIDalle2": "OpenAI DALL·E 2",
"OpenAIDalle3": "OpenAI DALL·E 3",
"OpenAIGPTImage1": "OpenAI GPT Image 1",
}

View File

@ -0,0 +1,906 @@
import io
from inspect import cleandoc
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api_nodes.apis.bfl_api import (
BFLStatus,
BFLFluxExpandImageRequest,
BFLFluxFillImageRequest,
BFLFluxCannyImageRequest,
BFLFluxDepthImageRequest,
BFLFluxProGenerateRequest,
BFLFluxProUltraGenerateRequest,
BFLFluxProGenerateResponse,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
)
from comfy_api_nodes.apinode_utils import (
downscale_image_tensor,
validate_aspect_ratio,
process_image_response,
resize_mask_to_image,
validate_string,
)
import numpy as np
from PIL import Image
import requests
import torch
import base64
import time
def convert_mask_to_image(mask: torch.Tensor):
"""
Make mask have the expected amount of dims (4) and channels (3) to be recognized as an image.
"""
mask = mask.unsqueeze(-1)
mask = torch.cat([mask]*3, dim=-1)
return mask
def handle_bfl_synchronous_operation(
operation: SynchronousOperation, timeout_bfl_calls=360
):
response_api: BFLFluxProGenerateResponse = operation.execute()
return _poll_until_generated(
response_api.polling_url, timeout=timeout_bfl_calls
)
def _poll_until_generated(polling_url: str, timeout=360):
# used bfl-comfy-nodes to verify code implementation:
# https://github.com/black-forest-labs/bfl-comfy-nodes/tree/main
start_time = time.time()
retries_404 = 0
max_retries_404 = 5
retry_404_seconds = 2
retry_202_seconds = 2
retry_pending_seconds = 1
request = requests.Request(method=HttpMethod.GET, url=polling_url)
# NOTE: should True loop be replaced with checking if workflow has been interrupted?
while True:
response = requests.Session().send(request.prepare())
if response.status_code == 200:
result = response.json()
if result["status"] == BFLStatus.ready:
img_url = result["result"]["sample"]
img_response = requests.get(img_url)
return process_image_response(img_response)
elif result["status"] in [
BFLStatus.request_moderated,
BFLStatus.content_moderated,
]:
status = result["status"]
raise Exception(
f"BFL API did not return an image due to: {status}."
)
elif result["status"] == BFLStatus.error:
raise Exception(f"BFL API encountered an error: {result}.")
elif result["status"] == BFLStatus.pending:
time.sleep(retry_pending_seconds)
continue
elif response.status_code == 404:
if retries_404 < max_retries_404:
retries_404 += 1
time.sleep(retry_404_seconds)
continue
raise Exception(
f"BFL API could not find task after {max_retries_404} tries."
)
elif response.status_code == 202:
time.sleep(retry_202_seconds)
elif time.time() - start_time > timeout:
raise Exception(
f"BFL API experienced a timeout; could not return request under {timeout} seconds."
)
else:
raise Exception(f"BFL API encountered an error: {response.json()}")
def convert_image_to_base64(image: torch.Tensor):
scaled_image = downscale_image_tensor(image, total_pixels=2048 * 2048)
# remove batch dimension if present
if len(scaled_image.shape) > 3:
scaled_image = scaled_image[0]
image_np = (scaled_image.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
return base64.b64encode(img_byte_arr.getvalue()).decode()
class FluxProUltraImageNode(ComfyNodeABC):
"""
Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution.
"""
MINIMUM_RATIO = 1 / 4
MAXIMUM_RATIO = 4 / 1
MINIMUM_RATIO_STR = "1:4"
MAXIMUM_RATIO_STR = "4:1"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"prompt_upsampling": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
"aspect_ratio": (
IO.STRING,
{
"default": "16:9",
"tooltip": "Aspect ratio of image; must be between 1:4 and 4:1.",
},
),
"raw": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "When True, generate less processed, more natural-looking images.",
},
),
},
"optional": {
"image_prompt": (IO.IMAGE,),
"image_prompt_strength": (
IO.FLOAT,
{
"default": 0.1,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Blend between the prompt and the image prompt.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
@classmethod
def VALIDATE_INPUTS(cls, aspect_ratio: str):
try:
validate_aspect_ratio(
aspect_ratio,
minimum_ratio=cls.MINIMUM_RATIO,
maximum_ratio=cls.MAXIMUM_RATIO,
minimum_ratio_str=cls.MINIMUM_RATIO_STR,
maximum_ratio_str=cls.MAXIMUM_RATIO_STR,
)
except Exception as e:
return str(e)
return True
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
self,
prompt: str,
aspect_ratio: str,
prompt_upsampling=False,
raw=False,
seed=0,
image_prompt=None,
image_prompt_strength=0.1,
auth_token=None,
**kwargs,
):
if image_prompt is None:
validate_string(prompt, strip_whitespace=False)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/bfl/flux-pro-1.1-ultra/generate",
method=HttpMethod.POST,
request_model=BFLFluxProUltraGenerateRequest,
response_model=BFLFluxProGenerateResponse,
),
request=BFLFluxProUltraGenerateRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
seed=seed,
aspect_ratio=validate_aspect_ratio(
aspect_ratio,
minimum_ratio=self.MINIMUM_RATIO,
maximum_ratio=self.MAXIMUM_RATIO,
minimum_ratio_str=self.MINIMUM_RATIO_STR,
maximum_ratio_str=self.MAXIMUM_RATIO_STR,
),
raw=raw,
image_prompt=(
image_prompt
if image_prompt is None
else convert_image_to_base64(image_prompt)
),
image_prompt_strength=(
None if image_prompt is None else round(image_prompt_strength, 2)
),
),
auth_token=auth_token,
)
output_image = handle_bfl_synchronous_operation(operation)
return (output_image,)
class FluxProImageNode(ComfyNodeABC):
"""
Generates images synchronously based on prompt and resolution.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"prompt_upsampling": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).",
},
),
"width": (
IO.INT,
{
"default": 1024,
"min": 256,
"max": 1440,
"step": 32,
},
),
"height": (
IO.INT,
{
"default": 768,
"min": 256,
"max": 1440,
"step": 32,
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"image_prompt": (IO.IMAGE,),
# "image_prompt_strength": (
# IO.FLOAT,
# {
# "default": 0.1,
# "min": 0.0,
# "max": 1.0,
# "step": 0.01,
# "tooltip": "Blend between the prompt and the image prompt.",
# },
# ),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
self,
prompt: str,
prompt_upsampling,
width: int,
height: int,
seed=0,
image_prompt=None,
# image_prompt_strength=0.1,
auth_token=None,
**kwargs,
):
image_prompt = (
image_prompt
if image_prompt is None
else convert_image_to_base64(image_prompt)
)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/bfl/flux-pro-1.1/generate",
method=HttpMethod.POST,
request_model=BFLFluxProGenerateRequest,
response_model=BFLFluxProGenerateResponse,
),
request=BFLFluxProGenerateRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
width=width,
height=height,
seed=seed,
image_prompt=image_prompt,
),
auth_token=auth_token,
)
output_image = handle_bfl_synchronous_operation(operation)
return (output_image,)
class FluxProExpandNode(ComfyNodeABC):
"""
Outpaints image based on prompt.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"prompt_upsampling": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).",
},
),
"top": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2048,
"tooltip": "Number of pixels to expand at the top of the image"
},
),
"bottom": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2048,
"tooltip": "Number of pixels to expand at the bottom of the image"
},
),
"left": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2048,
"tooltip": "Number of pixels to expand at the left side of the image"
},
),
"right": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2048,
"tooltip": "Number of pixels to expand at the right side of the image"
},
),
"guidance": (
IO.FLOAT,
{
"default": 60,
"min": 1.5,
"max": 100,
"tooltip": "Guidance strength for the image generation process"
},
),
"steps": (
IO.INT,
{
"default": 50,
"min": 15,
"max": 50,
"tooltip": "Number of steps for the image generation process"
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
self,
image: torch.Tensor,
prompt: str,
prompt_upsampling: bool,
top: int,
bottom: int,
left: int,
right: int,
steps: int,
guidance: float,
seed=0,
auth_token=None,
**kwargs,
):
image = convert_image_to_base64(image)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/bfl/flux-pro-1.0-expand/generate",
method=HttpMethod.POST,
request_model=BFLFluxExpandImageRequest,
response_model=BFLFluxProGenerateResponse,
),
request=BFLFluxExpandImageRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
top=top,
bottom=bottom,
left=left,
right=right,
steps=steps,
guidance=guidance,
seed=seed,
image=image,
),
auth_token=auth_token,
)
output_image = handle_bfl_synchronous_operation(operation)
return (output_image,)
class FluxProFillNode(ComfyNodeABC):
"""
Inpaints image based on mask and prompt.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"mask": (IO.MASK,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"prompt_upsampling": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).",
},
),
"guidance": (
IO.FLOAT,
{
"default": 60,
"min": 1.5,
"max": 100,
"tooltip": "Guidance strength for the image generation process"
},
),
"steps": (
IO.INT,
{
"default": 50,
"min": 15,
"max": 50,
"tooltip": "Number of steps for the image generation process"
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
self,
image: torch.Tensor,
mask: torch.Tensor,
prompt: str,
prompt_upsampling: bool,
steps: int,
guidance: float,
seed=0,
auth_token=None,
**kwargs,
):
# prepare mask
mask = resize_mask_to_image(mask, image)
mask = convert_image_to_base64(convert_mask_to_image(mask))
# make sure image will have alpha channel removed
image = convert_image_to_base64(image[:,:,:,:3])
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/bfl/flux-pro-1.0-fill/generate",
method=HttpMethod.POST,
request_model=BFLFluxFillImageRequest,
response_model=BFLFluxProGenerateResponse,
),
request=BFLFluxFillImageRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
steps=steps,
guidance=guidance,
seed=seed,
image=image,
mask=mask,
),
auth_token=auth_token,
)
output_image = handle_bfl_synchronous_operation(operation)
return (output_image,)
class FluxProCannyNode(ComfyNodeABC):
"""
Generate image using a control image (canny).
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"prompt_upsampling": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).",
},
),
"canny_low_threshold": (
IO.FLOAT,
{
"default": 0.1,
"min": 0.01,
"max": 0.99,
"step": 0.01,
"tooltip": "Low threshold for Canny edge detection; ignored if skip_processing is True"
},
),
"canny_high_threshold": (
IO.FLOAT,
{
"default": 0.4,
"min": 0.01,
"max": 0.99,
"step": 0.01,
"tooltip": "High threshold for Canny edge detection; ignored if skip_processing is True"
},
),
"skip_preprocessing": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to skip preprocessing; set to True if control_image already is canny-fied, False if it is a raw image.",
},
),
"guidance": (
IO.FLOAT,
{
"default": 30,
"min": 1,
"max": 100,
"tooltip": "Guidance strength for the image generation process"
},
),
"steps": (
IO.INT,
{
"default": 50,
"min": 15,
"max": 50,
"tooltip": "Number of steps for the image generation process"
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
self,
control_image: torch.Tensor,
prompt: str,
prompt_upsampling: bool,
canny_low_threshold: float,
canny_high_threshold: float,
skip_preprocessing: bool,
steps: int,
guidance: float,
seed=0,
auth_token=None,
**kwargs,
):
control_image = convert_image_to_base64(control_image[:,:,:,:3])
preprocessed_image = None
# scale canny threshold between 0-500, to match BFL's API
def scale_value(value: float, min_val=0, max_val=500):
return min_val + value * (max_val - min_val)
canny_low_threshold = int(round(scale_value(canny_low_threshold)))
canny_high_threshold = int(round(scale_value(canny_high_threshold)))
if skip_preprocessing:
preprocessed_image = control_image
control_image = None
canny_low_threshold = None
canny_high_threshold = None
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/bfl/flux-pro-1.0-canny/generate",
method=HttpMethod.POST,
request_model=BFLFluxCannyImageRequest,
response_model=BFLFluxProGenerateResponse,
),
request=BFLFluxCannyImageRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
steps=steps,
guidance=guidance,
seed=seed,
control_image=control_image,
canny_low_threshold=canny_low_threshold,
canny_high_threshold=canny_high_threshold,
preprocessed_image=preprocessed_image,
),
auth_token=auth_token,
)
output_image = handle_bfl_synchronous_operation(operation)
return (output_image,)
class FluxProDepthNode(ComfyNodeABC):
"""
Generate image using a control image (depth).
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"prompt_upsampling": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).",
},
),
"skip_preprocessing": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to skip preprocessing; set to True if control_image already is depth-ified, False if it is a raw image.",
},
),
"guidance": (
IO.FLOAT,
{
"default": 15,
"min": 1,
"max": 100,
"tooltip": "Guidance strength for the image generation process"
},
),
"steps": (
IO.INT,
{
"default": 50,
"min": 15,
"max": 50,
"tooltip": "Number of steps for the image generation process"
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
self,
control_image: torch.Tensor,
prompt: str,
prompt_upsampling: bool,
skip_preprocessing: bool,
steps: int,
guidance: float,
seed=0,
auth_token=None,
**kwargs,
):
control_image = convert_image_to_base64(control_image[:,:,:,:3])
preprocessed_image = None
if skip_preprocessing:
preprocessed_image = control_image
control_image = None
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/bfl/flux-pro-1.0-depth/generate",
method=HttpMethod.POST,
request_model=BFLFluxDepthImageRequest,
response_model=BFLFluxProGenerateResponse,
),
request=BFLFluxDepthImageRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
steps=steps,
guidance=guidance,
seed=seed,
control_image=control_image,
preprocessed_image=preprocessed_image,
),
auth_token=auth_token,
)
output_image = handle_bfl_synchronous_operation(operation)
return (output_image,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"FluxProUltraImageNode": FluxProUltraImageNode,
# "FluxProImageNode": FluxProImageNode,
"FluxProExpandNode": FluxProExpandNode,
"FluxProFillNode": FluxProFillNode,
"FluxProCannyNode": FluxProCannyNode,
"FluxProDepthNode": FluxProDepthNode,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"FluxProUltraImageNode": "Flux 1.1 [pro] Ultra Image",
# "FluxProImageNode": "Flux 1.1 [pro] Image",
"FluxProExpandNode": "Flux.1 Expand Image",
"FluxProFillNode": "Flux.1 Fill Image",
"FluxProCannyNode": "Flux.1 Canny Control Image",
"FluxProDepthNode": "Flux.1 Depth Control Image",
}

View File

@ -0,0 +1,777 @@
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from inspect import cleandoc
from PIL import Image
import numpy as np
import io
import torch
from comfy_api_nodes.apis import (
IdeogramGenerateRequest,
IdeogramGenerateResponse,
ImageRequest,
IdeogramV3Request,
IdeogramV3EditRequest,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_bytesio,
bytesio_to_image_tensor,
resize_mask_to_image,
)
V1_V1_RES_MAP = {
"Auto":"AUTO",
"512 x 1536":"RESOLUTION_512_1536",
"576 x 1408":"RESOLUTION_576_1408",
"576 x 1472":"RESOLUTION_576_1472",
"576 x 1536":"RESOLUTION_576_1536",
"640 x 1024":"RESOLUTION_640_1024",
"640 x 1344":"RESOLUTION_640_1344",
"640 x 1408":"RESOLUTION_640_1408",
"640 x 1472":"RESOLUTION_640_1472",
"640 x 1536":"RESOLUTION_640_1536",
"704 x 1152":"RESOLUTION_704_1152",
"704 x 1216":"RESOLUTION_704_1216",
"704 x 1280":"RESOLUTION_704_1280",
"704 x 1344":"RESOLUTION_704_1344",
"704 x 1408":"RESOLUTION_704_1408",
"704 x 1472":"RESOLUTION_704_1472",
"720 x 1280":"RESOLUTION_720_1280",
"736 x 1312":"RESOLUTION_736_1312",
"768 x 1024":"RESOLUTION_768_1024",
"768 x 1088":"RESOLUTION_768_1088",
"768 x 1152":"RESOLUTION_768_1152",
"768 x 1216":"RESOLUTION_768_1216",
"768 x 1232":"RESOLUTION_768_1232",
"768 x 1280":"RESOLUTION_768_1280",
"768 x 1344":"RESOLUTION_768_1344",
"832 x 960":"RESOLUTION_832_960",
"832 x 1024":"RESOLUTION_832_1024",
"832 x 1088":"RESOLUTION_832_1088",
"832 x 1152":"RESOLUTION_832_1152",
"832 x 1216":"RESOLUTION_832_1216",
"832 x 1248":"RESOLUTION_832_1248",
"864 x 1152":"RESOLUTION_864_1152",
"896 x 960":"RESOLUTION_896_960",
"896 x 1024":"RESOLUTION_896_1024",
"896 x 1088":"RESOLUTION_896_1088",
"896 x 1120":"RESOLUTION_896_1120",
"896 x 1152":"RESOLUTION_896_1152",
"960 x 832":"RESOLUTION_960_832",
"960 x 896":"RESOLUTION_960_896",
"960 x 1024":"RESOLUTION_960_1024",
"960 x 1088":"RESOLUTION_960_1088",
"1024 x 640":"RESOLUTION_1024_640",
"1024 x 768":"RESOLUTION_1024_768",
"1024 x 832":"RESOLUTION_1024_832",
"1024 x 896":"RESOLUTION_1024_896",
"1024 x 960":"RESOLUTION_1024_960",
"1024 x 1024":"RESOLUTION_1024_1024",
"1088 x 768":"RESOLUTION_1088_768",
"1088 x 832":"RESOLUTION_1088_832",
"1088 x 896":"RESOLUTION_1088_896",
"1088 x 960":"RESOLUTION_1088_960",
"1120 x 896":"RESOLUTION_1120_896",
"1152 x 704":"RESOLUTION_1152_704",
"1152 x 768":"RESOLUTION_1152_768",
"1152 x 832":"RESOLUTION_1152_832",
"1152 x 864":"RESOLUTION_1152_864",
"1152 x 896":"RESOLUTION_1152_896",
"1216 x 704":"RESOLUTION_1216_704",
"1216 x 768":"RESOLUTION_1216_768",
"1216 x 832":"RESOLUTION_1216_832",
"1232 x 768":"RESOLUTION_1232_768",
"1248 x 832":"RESOLUTION_1248_832",
"1280 x 704":"RESOLUTION_1280_704",
"1280 x 720":"RESOLUTION_1280_720",
"1280 x 768":"RESOLUTION_1280_768",
"1280 x 800":"RESOLUTION_1280_800",
"1312 x 736":"RESOLUTION_1312_736",
"1344 x 640":"RESOLUTION_1344_640",
"1344 x 704":"RESOLUTION_1344_704",
"1344 x 768":"RESOLUTION_1344_768",
"1408 x 576":"RESOLUTION_1408_576",
"1408 x 640":"RESOLUTION_1408_640",
"1408 x 704":"RESOLUTION_1408_704",
"1472 x 576":"RESOLUTION_1472_576",
"1472 x 640":"RESOLUTION_1472_640",
"1472 x 704":"RESOLUTION_1472_704",
"1536 x 512":"RESOLUTION_1536_512",
"1536 x 576":"RESOLUTION_1536_576",
"1536 x 640":"RESOLUTION_1536_640",
}
V1_V2_RATIO_MAP = {
"1:1":"ASPECT_1_1",
"4:3":"ASPECT_4_3",
"3:4":"ASPECT_3_4",
"16:9":"ASPECT_16_9",
"9:16":"ASPECT_9_16",
"2:1":"ASPECT_2_1",
"1:2":"ASPECT_1_2",
"3:2":"ASPECT_3_2",
"2:3":"ASPECT_2_3",
"4:5":"ASPECT_4_5",
"5:4":"ASPECT_5_4",
}
V3_RATIO_MAP = {
"1:3":"1x3",
"3:1":"3x1",
"1:2":"1x2",
"2:1":"2x1",
"9:16":"9x16",
"16:9":"16x9",
"10:16":"10x16",
"16:10":"16x10",
"2:3":"2x3",
"3:2":"3x2",
"3:4":"3x4",
"4:3":"4x3",
"4:5":"4x5",
"5:4":"5x4",
"1:1":"1x1",
}
V3_RESOLUTIONS= [
"Auto",
"512x1536",
"576x1408",
"576x1472",
"576x1536",
"640x1344",
"640x1408",
"640x1472",
"640x1536",
"704x1152",
"704x1216",
"704x1280",
"704x1344",
"704x1408",
"704x1472",
"736x1312",
"768x1088",
"768x1216",
"768x1280",
"768x1344",
"800x1280",
"832x960",
"832x1024",
"832x1088",
"832x1152",
"832x1216",
"832x1248",
"864x1152",
"896x960",
"896x1024",
"896x1088",
"896x1120",
"896x1152",
"960x832",
"960x896",
"960x1024",
"960x1088",
"1024x832",
"1024x896",
"1024x960",
"1024x1024",
"1088x768",
"1088x832",
"1088x896",
"1088x960",
"1120x896",
"1152x704",
"1152x832",
"1152x864",
"1152x896",
"1216x704",
"1216x768",
"1216x832",
"1248x832",
"1280x704",
"1280x768",
"1280x800",
"1312x736",
"1344x640",
"1344x704",
"1344x768",
"1408x576",
"1408x640",
"1408x704",
"1472x576",
"1472x640",
"1472x704",
"1536x512",
"1536x576",
"1536x640"
]
def download_and_process_images(image_urls):
"""Helper function to download and process multiple images from URLs"""
# Initialize list to store image tensors
image_tensors = []
for image_url in image_urls:
# Using functions from apinode_utils.py to handle downloading and processing
image_bytesio = download_url_to_bytesio(image_url) # Download image content to BytesIO
img_tensor = bytesio_to_image_tensor(image_bytesio, mode="RGB") # Convert to torch.Tensor with RGB mode
image_tensors.append(img_tensor)
# Stack tensors to match (N, width, height, channels)
if image_tensors:
stacked_tensors = torch.cat(image_tensors, dim=0)
else:
raise Exception("No valid images were processed")
return stacked_tensors
class IdeogramV1(ComfyNodeABC):
"""
Generates images synchronously using the Ideogram V1 model.
Images links are available for a limited period of time; if you would like to keep the image, you must download it.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"turbo": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to use turbo mode (faster generation, potentially lower quality)",
}
),
},
"optional": {
"aspect_ratio": (
IO.COMBO,
{
"options": list(V1_V2_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation.",
},
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
),
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Description of what to exclude from the image",
},
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
),
},
"hidden": {"auth_token": "AUTH_TOKEN_COMFY_ORG"},
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram/v1"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
prompt,
turbo=False,
aspect_ratio="1:1",
magic_prompt_option="AUTO",
seed=0,
negative_prompt="",
num_images=1,
auth_token=None,
):
# Determine the model based on turbo setting
aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
model = "V_1_TURBO" if turbo else "V_1"
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/ideogram/generate",
method=HttpMethod.POST,
request_model=IdeogramGenerateRequest,
response_model=IdeogramGenerateResponse,
),
request=IdeogramGenerateRequest(
image_request=ImageRequest(
prompt=prompt,
model=model,
num_images=num_images,
seed=seed,
aspect_ratio=aspect_ratio if aspect_ratio != "ASPECT_1_1" else None,
magic_prompt_option=(
magic_prompt_option if magic_prompt_option != "AUTO" else None
),
negative_prompt=negative_prompt if negative_prompt else None,
)
),
auth_token=auth_token,
)
response = operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
image_urls = [image_data.url for image_data in response.data if image_data.url]
if not image_urls:
raise Exception("No image URLs were generated in the response")
return (download_and_process_images(image_urls),)
class IdeogramV2(ComfyNodeABC):
"""
Generates images synchronously using the Ideogram V2 model.
Images links are available for a limited period of time; if you would like to keep the image, you must download it.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"turbo": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to use turbo mode (faster generation, potentially lower quality)",
}
),
},
"optional": {
"aspect_ratio": (
IO.COMBO,
{
"options": list(V1_V2_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation. Ignored if resolution is not set to AUTO.",
},
),
"resolution": (
IO.COMBO,
{
"options": list(V1_V1_RES_MAP.keys()),
"default": "Auto",
"tooltip": "The resolution for image generation. If not set to AUTO, this overrides the aspect_ratio setting.",
},
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
),
"style_type": (
IO.COMBO,
{
"options": ["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"],
"default": "NONE",
"tooltip": "Style type for generation (V2 only)",
},
),
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Description of what to exclude from the image",
},
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
),
#"color_palette": (
# IO.STRING,
# {
# "multiline": False,
# "default": "",
# "tooltip": "Color palette preset name or hex colors with weights",
# },
#),
},
"hidden": {"auth_token": "AUTH_TOKEN_COMFY_ORG"},
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram/v2"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
prompt,
turbo=False,
aspect_ratio="1:1",
resolution="Auto",
magic_prompt_option="AUTO",
seed=0,
style_type="NONE",
negative_prompt="",
num_images=1,
color_palette="",
auth_token=None,
):
aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
resolution = V1_V1_RES_MAP.get(resolution, None)
# Determine the model based on turbo setting
model = "V_2_TURBO" if turbo else "V_2"
# Handle resolution vs aspect_ratio logic
# If resolution is not AUTO, it overrides aspect_ratio
final_resolution = None
final_aspect_ratio = None
if resolution != "AUTO":
final_resolution = resolution
else:
final_aspect_ratio = aspect_ratio if aspect_ratio != "ASPECT_1_1" else None
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/ideogram/generate",
method=HttpMethod.POST,
request_model=IdeogramGenerateRequest,
response_model=IdeogramGenerateResponse,
),
request=IdeogramGenerateRequest(
image_request=ImageRequest(
prompt=prompt,
model=model,
num_images=num_images,
seed=seed,
aspect_ratio=final_aspect_ratio,
resolution=final_resolution,
magic_prompt_option=(
magic_prompt_option if magic_prompt_option != "AUTO" else None
),
style_type=style_type if style_type != "NONE" else None,
negative_prompt=negative_prompt if negative_prompt else None,
color_palette=color_palette if color_palette else None,
)
),
auth_token=auth_token,
)
response = operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
image_urls = [image_data.url for image_data in response.data if image_data.url]
if not image_urls:
raise Exception("No image URLs were generated in the response")
return (download_and_process_images(image_urls),)
class IdeogramV3(ComfyNodeABC):
"""
Generates images synchronously using the Ideogram V3 model.
Supports both regular image generation from text prompts and image editing with mask.
Images links are available for a limited period of time; if you would like to keep the image, you must download it.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation or editing",
},
),
},
"optional": {
"image": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional reference image for image editing.",
},
),
"mask": (
IO.MASK,
{
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
},
),
"aspect_ratio": (
IO.COMBO,
{
"options": list(V3_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation. Ignored if resolution is not set to Auto.",
},
),
"resolution": (
IO.COMBO,
{
"options": V3_RESOLUTIONS,
"default": "Auto",
"tooltip": "The resolution for image generation. If not set to Auto, this overrides the aspect_ratio setting.",
},
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
),
"rendering_speed": (
IO.COMBO,
{
"options": ["BALANCED", "TURBO", "QUALITY"],
"default": "BALANCED",
"tooltip": "Controls the trade-off between generation speed and quality",
},
),
},
"hidden": {"auth_token": "AUTH_TOKEN_COMFY_ORG"},
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram/v3"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
prompt,
image=None,
mask=None,
resolution="Auto",
aspect_ratio="1:1",
magic_prompt_option="AUTO",
seed=0,
num_images=1,
rendering_speed="BALANCED",
auth_token=None,
):
# Check if both image and mask are provided for editing mode
if image is not None and mask is not None:
# Edit mode
path = "/proxy/ideogram/ideogram-v3/edit"
# Process image and mask
input_tensor = image.squeeze().cpu()
# Resize mask to match image dimension
mask = resize_mask_to_image(mask, image, allow_gradient=False)
# Invert mask, as Ideogram API will edit black areas instead of white areas (opposite of convention).
mask = 1.0 - mask
# Validate mask dimensions match image
if mask.shape[1:] != image.shape[1:-1]:
raise Exception("Mask and Image must be the same size")
# Process image
img_np = (input_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(img_np)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
img_binary = img_byte_arr
img_binary.name = "image.png"
# Process mask - white areas will be replaced
mask_np = (mask.squeeze().cpu().numpy() * 255).astype(np.uint8)
mask_img = Image.fromarray(mask_np)
mask_byte_arr = io.BytesIO()
mask_img.save(mask_byte_arr, format="PNG")
mask_byte_arr.seek(0)
mask_binary = mask_byte_arr
mask_binary.name = "mask.png"
# Create edit request
edit_request = IdeogramV3EditRequest(
prompt=prompt,
rendering_speed=rendering_speed,
)
# Add optional parameters
if magic_prompt_option != "AUTO":
edit_request.magic_prompt = magic_prompt_option
if seed != 0:
edit_request.seed = seed
if num_images > 1:
edit_request.num_images = num_images
# Execute the operation for edit mode
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=IdeogramV3EditRequest,
response_model=IdeogramGenerateResponse,
),
request=edit_request,
files={
"image": img_binary,
"mask": mask_binary,
},
content_type="multipart/form-data",
auth_token=auth_token,
)
elif image is not None or mask is not None:
# If only one of image or mask is provided, raise an error
raise Exception("Ideogram V3 image editing requires both an image AND a mask")
else:
# Generation mode
path = "/proxy/ideogram/ideogram-v3/generate"
# Create generation request
gen_request = IdeogramV3Request(
prompt=prompt,
rendering_speed=rendering_speed,
)
# Handle resolution vs aspect ratio
if resolution != "Auto":
gen_request.resolution = resolution
elif aspect_ratio != "1:1":
v3_aspect = V3_RATIO_MAP.get(aspect_ratio)
if v3_aspect:
gen_request.aspect_ratio = v3_aspect
# Add optional parameters
if magic_prompt_option != "AUTO":
gen_request.magic_prompt = magic_prompt_option
if seed != 0:
gen_request.seed = seed
if num_images > 1:
gen_request.num_images = num_images
# Execute the operation for generation mode
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=IdeogramV3Request,
response_model=IdeogramGenerateResponse,
),
request=gen_request,
auth_token=auth_token,
)
# Execute the operation and process response
response = operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
image_urls = [image_data.url for image_data in response.data if image_data.url]
if not image_urls:
raise Exception("No image URLs were generated in the response")
return (download_and_process_images(image_urls),)
NODE_CLASS_MAPPINGS = {
"IdeogramV1": IdeogramV1,
"IdeogramV2": IdeogramV2,
"IdeogramV3": IdeogramV3,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"IdeogramV1": "Ideogram V1",
"IdeogramV2": "Ideogram V2",
"IdeogramV3": "Ideogram V3",
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,702 @@
from inspect import cleandoc
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis.luma_api import (
LumaImageModel,
LumaVideoModel,
LumaVideoOutputResolution,
LumaVideoModelOutputDuration,
LumaAspectRatio,
LumaState,
LumaImageGenerationRequest,
LumaGenerationRequest,
LumaGeneration,
LumaCharacterRef,
LumaModifyImageRef,
LumaImageIdentity,
LumaReference,
LumaReferenceChain,
LumaImageReference,
LumaKeyframes,
LumaConceptChain,
LumaIO,
get_luma_concepts,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
upload_images_to_comfyapi,
process_image_response,
validate_string,
)
import requests
import torch
from io import BytesIO
class LumaReferenceNode(ComfyNodeABC):
"""
Holds an image and weight for use with Luma Generate Image node.
"""
RETURN_TYPES = (LumaIO.LUMA_REF,)
RETURN_NAMES = ("luma_ref",)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "create_luma_reference"
CATEGORY = "api node/image/Luma"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (
IO.IMAGE,
{
"tooltip": "Image to use as reference.",
},
),
"weight": (
IO.FLOAT,
{
"default": 1.0,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Weight of image reference.",
},
),
},
"optional": {"luma_ref": (LumaIO.LUMA_REF,)},
}
def create_luma_reference(
self, image: torch.Tensor, weight: float, luma_ref: LumaReferenceChain = None
):
if luma_ref is not None:
luma_ref = luma_ref.clone()
else:
luma_ref = LumaReferenceChain()
luma_ref.add(LumaReference(image=image, weight=round(weight, 2)))
return (luma_ref,)
class LumaConceptsNode(ComfyNodeABC):
"""
Holds one or more Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes.
"""
RETURN_TYPES = (LumaIO.LUMA_CONCEPTS,)
RETURN_NAMES = ("luma_concepts",)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "create_concepts"
CATEGORY = "api node/video/Luma"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"concept1": (get_luma_concepts(include_none=True),),
"concept2": (get_luma_concepts(include_none=True),),
"concept3": (get_luma_concepts(include_none=True),),
"concept4": (get_luma_concepts(include_none=True),),
},
"optional": {
"luma_concepts": (
LumaIO.LUMA_CONCEPTS,
{
"tooltip": "Optional Camera Concepts to add to the ones chosen here."
},
),
},
}
def create_concepts(
self,
concept1: str,
concept2: str,
concept3: str,
concept4: str,
luma_concepts: LumaConceptChain = None,
):
chain = LumaConceptChain(str_list=[concept1, concept2, concept3, concept4])
if luma_concepts is not None:
chain = luma_concepts.clone_and_merge(chain)
return (chain,)
class LumaImageGenerationNode(ComfyNodeABC):
"""
Generates images synchronously based on prompt and aspect ratio.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Luma"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"model": ([model.value for model in LumaImageModel],),
"aspect_ratio": (
[ratio.value for ratio in LumaAspectRatio],
{
"default": LumaAspectRatio.ratio_16_9,
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.",
},
),
"style_image_weight": (
IO.FLOAT,
{
"default": 1.0,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Weight of style image. Ignored if no style_image provided.",
},
),
},
"optional": {
"image_luma_ref": (
LumaIO.LUMA_REF,
{
"tooltip": "Luma Reference node connection to influence generation with input images; up to 4 images can be considered."
},
),
"style_image": (
IO.IMAGE,
{"tooltip": "Style reference image; only 1 image will be used."},
),
"character_image": (
IO.IMAGE,
{
"tooltip": "Character reference images; can be a batch of multiple, up to 4 images can be considered."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(
self,
prompt: str,
model: str,
aspect_ratio: str,
seed,
style_image_weight: float,
image_luma_ref: LumaReferenceChain = None,
style_image: torch.Tensor = None,
character_image: torch.Tensor = None,
auth_token=None,
**kwargs,
):
validate_string(prompt, strip_whitespace=True, min_length=3)
# handle image_luma_ref
api_image_ref = None
if image_luma_ref is not None:
api_image_ref = self._convert_luma_refs(
image_luma_ref, max_refs=4, auth_token=auth_token
)
# handle style_luma_ref
api_style_ref = None
if style_image is not None:
api_style_ref = self._convert_style_image(
style_image, weight=style_image_weight, auth_token=auth_token
)
# handle character_ref images
character_ref = None
if character_image is not None:
download_urls = upload_images_to_comfyapi(
character_image, max_images=4, auth_token=auth_token
)
character_ref = LumaCharacterRef(
identity0=LumaImageIdentity(images=download_urls)
)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations/image",
method=HttpMethod.POST,
request_model=LumaImageGenerationRequest,
response_model=LumaGeneration,
),
request=LumaImageGenerationRequest(
prompt=prompt,
model=model,
aspect_ratio=aspect_ratio,
image_ref=api_image_ref,
style_ref=api_style_ref,
character_ref=character_ref,
),
auth_token=auth_token,
)
response_api: LumaGeneration = operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
status_extractor=lambda x: x.state,
auth_token=auth_token,
)
response_poll = operation.execute()
img_response = requests.get(response_poll.assets.image)
img = process_image_response(img_response)
return (img,)
def _convert_luma_refs(
self, luma_ref: LumaReferenceChain, max_refs: int, auth_token=None
):
luma_urls = []
ref_count = 0
for ref in luma_ref.refs:
download_urls = upload_images_to_comfyapi(
ref.image, max_images=1, auth_token=auth_token
)
luma_urls.append(download_urls[0])
ref_count += 1
if ref_count >= max_refs:
break
return luma_ref.create_api_model(download_urls=luma_urls, max_refs=max_refs)
def _convert_style_image(
self, style_image: torch.Tensor, weight: float, auth_token=None
):
chain = LumaReferenceChain(
first_ref=LumaReference(image=style_image, weight=weight)
)
return self._convert_luma_refs(chain, max_refs=1, auth_token=auth_token)
class LumaImageModifyNode(ComfyNodeABC):
"""
Modifies images synchronously based on prompt and aspect ratio.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Luma"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
),
"image_weight": (
IO.FLOAT,
{
"default": 0.1,
"min": 0.0,
"max": 0.98,
"step": 0.01,
"tooltip": "Weight of the image; the closer to 1.0, the less the image will be modified.",
},
),
"model": ([model.value for model in LumaImageModel],),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.",
},
),
},
"optional": {},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(
self,
prompt: str,
model: str,
image: torch.Tensor,
image_weight: float,
seed,
auth_token=None,
**kwargs,
):
# first, upload image
download_urls = upload_images_to_comfyapi(
image, max_images=1, auth_token=auth_token
)
image_url = download_urls[0]
# next, make Luma call with download url provided
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations/image",
method=HttpMethod.POST,
request_model=LumaImageGenerationRequest,
response_model=LumaGeneration,
),
request=LumaImageGenerationRequest(
prompt=prompt,
model=model,
modify_image_ref=LumaModifyImageRef(
url=image_url, weight=round(max(min(1.0-image_weight, 0.98), 0.0), 2)
),
),
auth_token=auth_token,
)
response_api: LumaGeneration = operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
status_extractor=lambda x: x.state,
auth_token=auth_token,
)
response_poll = operation.execute()
img_response = requests.get(response_poll.assets.image)
img = process_image_response(img_response)
return (img,)
class LumaTextToVideoGenerationNode(ComfyNodeABC):
"""
Generates videos synchronously based on prompt and output_size.
"""
RETURN_TYPES = (IO.VIDEO,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/video/Luma"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the video generation",
},
),
"model": ([model.value for model in LumaVideoModel],),
"aspect_ratio": (
[ratio.value for ratio in LumaAspectRatio],
{
"default": LumaAspectRatio.ratio_16_9,
},
),
"resolution": (
[resolution.value for resolution in LumaVideoOutputResolution],
{
"default": LumaVideoOutputResolution.res_540p,
},
),
"duration": ([dur.value for dur in LumaVideoModelOutputDuration],),
"loop": (
IO.BOOLEAN,
{
"default": False,
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.",
},
),
},
"optional": {
"luma_concepts": (
LumaIO.LUMA_CONCEPTS,
{
"tooltip": "Optional Camera Concepts to dictate camera motion via the Luma Concepts node."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(
self,
prompt: str,
model: str,
aspect_ratio: str,
resolution: str,
duration: str,
loop: bool,
seed,
luma_concepts: LumaConceptChain = None,
auth_token=None,
**kwargs,
):
validate_string(prompt, strip_whitespace=False, min_length=3)
duration = duration if model != LumaVideoModel.ray_1_6 else None
resolution = resolution if model != LumaVideoModel.ray_1_6 else None
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations",
method=HttpMethod.POST,
request_model=LumaGenerationRequest,
response_model=LumaGeneration,
),
request=LumaGenerationRequest(
prompt=prompt,
model=model,
resolution=resolution,
aspect_ratio=aspect_ratio,
duration=duration,
loop=loop,
concepts=luma_concepts.create_api_model() if luma_concepts else None,
),
auth_token=auth_token,
)
response_api: LumaGeneration = operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
status_extractor=lambda x: x.state,
auth_token=auth_token,
)
response_poll = operation.execute()
vid_response = requests.get(response_poll.assets.video)
return (VideoFromFile(BytesIO(vid_response.content)),)
class LumaImageToVideoGenerationNode(ComfyNodeABC):
"""
Generates videos synchronously based on prompt, input images, and output_size.
"""
RETURN_TYPES = (IO.VIDEO,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/video/Luma"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the video generation",
},
),
"model": ([model.value for model in LumaVideoModel],),
# "aspect_ratio": ([ratio.value for ratio in LumaAspectRatio], {
# "default": LumaAspectRatio.ratio_16_9,
# }),
"resolution": (
[resolution.value for resolution in LumaVideoOutputResolution],
{
"default": LumaVideoOutputResolution.res_540p,
},
),
"duration": ([dur.value for dur in LumaVideoModelOutputDuration],),
"loop": (
IO.BOOLEAN,
{
"default": False,
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.",
},
),
},
"optional": {
"first_image": (
IO.IMAGE,
{"tooltip": "First frame of generated video."},
),
"last_image": (IO.IMAGE, {"tooltip": "Last frame of generated video."}),
"luma_concepts": (
LumaIO.LUMA_CONCEPTS,
{
"tooltip": "Optional Camera Concepts to dictate camera motion via the Luma Concepts node."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(
self,
prompt: str,
model: str,
resolution: str,
duration: str,
loop: bool,
seed,
first_image: torch.Tensor = None,
last_image: torch.Tensor = None,
luma_concepts: LumaConceptChain = None,
auth_token=None,
**kwargs,
):
if first_image is None and last_image is None:
raise Exception(
"At least one of first_image and last_image requires an input."
)
keyframes = self._convert_to_keyframes(first_image, last_image, auth_token)
duration = duration if model != LumaVideoModel.ray_1_6 else None
resolution = resolution if model != LumaVideoModel.ray_1_6 else None
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations",
method=HttpMethod.POST,
request_model=LumaGenerationRequest,
response_model=LumaGeneration,
),
request=LumaGenerationRequest(
prompt=prompt,
model=model,
aspect_ratio=LumaAspectRatio.ratio_16_9, # ignored, but still needed by the API for some reason
resolution=resolution,
duration=duration,
loop=loop,
keyframes=keyframes,
concepts=luma_concepts.create_api_model() if luma_concepts else None,
),
auth_token=auth_token,
)
response_api: LumaGeneration = operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
status_extractor=lambda x: x.state,
auth_token=auth_token,
)
response_poll = operation.execute()
vid_response = requests.get(response_poll.assets.video)
return (VideoFromFile(BytesIO(vid_response.content)),)
def _convert_to_keyframes(
self,
first_image: torch.Tensor = None,
last_image: torch.Tensor = None,
auth_token=None,
):
if first_image is None and last_image is None:
return None
frame0 = None
frame1 = None
if first_image is not None:
download_urls = upload_images_to_comfyapi(
first_image, max_images=1, auth_token=auth_token
)
frame0 = LumaImageReference(type="image", url=download_urls[0])
if last_image is not None:
download_urls = upload_images_to_comfyapi(
last_image, max_images=1, auth_token=auth_token
)
frame1 = LumaImageReference(type="image", url=download_urls[0])
return LumaKeyframes(frame0=frame0, frame1=frame1)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"LumaImageNode": LumaImageGenerationNode,
"LumaImageModifyNode": LumaImageModifyNode,
"LumaVideoNode": LumaTextToVideoGenerationNode,
"LumaImageToVideoNode": LumaImageToVideoGenerationNode,
"LumaReferenceNode": LumaReferenceNode,
"LumaConceptsNode": LumaConceptsNode,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"LumaImageNode": "Luma Text to Image",
"LumaImageModifyNode": "Luma Image to Image",
"LumaVideoNode": "Luma Text to Video",
"LumaImageToVideoNode": "Luma Image to Video",
"LumaReferenceNode": "Luma Reference",
"LumaConceptsNode": "Luma Concepts",
}

View File

@ -0,0 +1,306 @@
from comfy.comfy_types.node_typing import IO
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis import (
MinimaxVideoGenerationRequest,
MinimaxVideoGenerationResponse,
MinimaxFileRetrieveResponse,
MinimaxTaskResultResponse,
SubjectReferenceItem,
Model
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_bytesio,
upload_images_to_comfyapi,
validate_string,
)
import torch
import logging
class MinimaxTextToVideoNode:
"""
Generates videos synchronously based on a prompt, and optional parameters using MiniMax's API.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"T2V-01",
"T2V-01-Director",
],
{
"default": "T2V-01",
"tooltip": "Model to use for video generation",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
def generate_video(
self,
prompt_text,
seed=0,
model="T2V-01",
image: torch.Tensor=None, # used for ImageToVideo
subject: torch.Tensor=None, # used for SubjectToVideo
auth_token=None,
):
'''
Function used between MiniMax nodes - supports T2V, I2V, and S2V, based on provided arguments.
'''
if image is None:
validate_string(prompt_text, field_name="prompt_text")
# upload image, if passed in
image_url = None
if image is not None:
image_url = upload_images_to_comfyapi(image, max_images=1, auth_token=auth_token)[0]
# TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model
subject_reference = None
if subject is not None:
subject_url = upload_images_to_comfyapi(subject, max_images=1, auth_token=auth_token)[0]
subject_reference = [SubjectReferenceItem(image=subject_url)]
video_generate_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/video_generation",
method=HttpMethod.POST,
request_model=MinimaxVideoGenerationRequest,
response_model=MinimaxVideoGenerationResponse,
),
request=MinimaxVideoGenerationRequest(
model=Model(model),
prompt=prompt_text,
callback_url=None,
first_frame_image=image_url,
subject_reference=subject_reference,
prompt_optimizer=None,
),
auth_token=auth_token,
)
response = video_generate_operation.execute()
task_id = response.task_id
if not task_id:
raise Exception(f"MiniMax generation failed: {response.base_resp}")
video_generate_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/minimax/query/video_generation",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxTaskResultResponse,
query_params={"task_id": task_id},
),
completed_statuses=["Success"],
failed_statuses=["Fail"],
status_extractor=lambda x: x.status.value,
auth_token=auth_token,
)
task_result = video_generate_operation.execute()
file_id = task_result.file_id
if file_id is None:
raise Exception("Request was not successful. Missing file ID.")
file_retrieve_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/files/retrieve",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxFileRetrieveResponse,
query_params={"file_id": int(file_id)},
),
request=EmptyRequest(),
auth_token=auth_token,
)
file_result = file_retrieve_operation.execute()
file_url = file_result.file.download_url
if file_url is None:
raise Exception(
f"No video was found in the response. Full response: {file_result.model_dump()}"
)
logging.info(f"Generated video URL: {file_url}")
video_io = download_url_to_bytesio(file_url)
if video_io is None:
error_msg = f"Failed to download video from {file_url}"
logging.error(error_msg)
raise Exception(error_msg)
return (VideoFromFile(video_io),)
class MinimaxImageToVideoNode(MinimaxTextToVideoNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (
IO.IMAGE,
{
"tooltip": "Image to use as first frame of video generation"
},
),
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"I2V-01-Director",
"I2V-01",
"I2V-01-live",
],
{
"default": "I2V-01",
"tooltip": "Model to use for video generation",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from an image and prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
class MinimaxSubjectToVideoNode(MinimaxTextToVideoNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"subject": (
IO.IMAGE,
{
"tooltip": "Image of subject to reference video generation"
},
),
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"S2V-01",
],
{
"default": "S2V-01",
"tooltip": "Model to use for video generation",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from an image and prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"MinimaxTextToVideoNode": MinimaxTextToVideoNode,
"MinimaxImageToVideoNode": MinimaxImageToVideoNode,
# "MinimaxSubjectToVideoNode": MinimaxSubjectToVideoNode,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"MinimaxTextToVideoNode": "MiniMax Text to Video",
"MinimaxImageToVideoNode": "MiniMax Image to Video",
"MinimaxSubjectToVideoNode": "MiniMax Subject to Video",
}

View File

@ -0,0 +1,487 @@
import io
from inspect import cleandoc
import numpy as np
import torch
from PIL import Image
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from comfy_api_nodes.apis import (
OpenAIImageGenerationRequest,
OpenAIImageEditRequest,
OpenAIImageGenerationResponse,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
)
from comfy_api_nodes.apinode_utils import (
downscale_image_tensor,
validate_and_cast_response,
validate_string,
)
class OpenAIDalle2(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's DALL·E 2 endpoint.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text prompt for DALL·E",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2**31 - 1,
"step": 1,
"display": "number",
"control_after_generate": True,
"tooltip": "not implemented yet in backend",
},
),
"size": (
IO.COMBO,
{
"options": ["256x256", "512x512", "1024x1024"],
"default": "1024x1024",
"tooltip": "Image size",
},
),
"n": (
IO.INT,
{
"default": 1,
"min": 1,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "How many images to generate",
},
),
"image": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional reference image for image editing.",
},
),
"mask": (
IO.MASK,
{
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
},
),
},
"hidden": {"auth_token": "AUTH_TOKEN_COMFY_ORG"},
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/OpenAI"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
prompt,
seed=0,
image=None,
mask=None,
n=1,
size="1024x1024",
auth_token=None,
):
validate_string(prompt, strip_whitespace=False)
model = "dall-e-2"
path = "/proxy/openai/images/generations"
content_type = "application/json"
request_class = OpenAIImageGenerationRequest
img_binary = None
if image is not None and mask is not None:
path = "/proxy/openai/images/edits"
content_type = "multipart/form-data"
request_class = OpenAIImageEditRequest
input_tensor = image.squeeze().cpu()
height, width, channels = input_tensor.shape
rgba_tensor = torch.ones(height, width, 4, device="cpu")
rgba_tensor[:, :, :channels] = input_tensor
if mask.shape[1:] != image.shape[1:-1]:
raise Exception("Mask and Image must be the same size")
rgba_tensor[:, :, 3] = 1 - mask.squeeze().cpu()
rgba_tensor = downscale_image_tensor(rgba_tensor.unsqueeze(0)).squeeze()
image_np = (rgba_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
img_binary = img_byte_arr # .getvalue()
img_binary.name = "image.png"
elif image is not None or mask is not None:
raise Exception("Dall-E 2 image editing requires an image AND a mask")
# Build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=request_class,
response_model=OpenAIImageGenerationResponse,
),
request=request_class(
model=model,
prompt=prompt,
n=n,
size=size,
seed=seed,
),
files=(
{
"image": img_binary,
}
if img_binary
else None
),
content_type=content_type,
auth_token=auth_token,
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
class OpenAIDalle3(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's DALL·E 3 endpoint.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text prompt for DALL·E",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2**31 - 1,
"step": 1,
"display": "number",
"control_after_generate": True,
"tooltip": "not implemented yet in backend",
},
),
"quality": (
IO.COMBO,
{
"options": ["standard", "hd"],
"default": "standard",
"tooltip": "Image quality",
},
),
"style": (
IO.COMBO,
{
"options": ["natural", "vivid"],
"default": "natural",
"tooltip": "Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images.",
},
),
"size": (
IO.COMBO,
{
"options": ["1024x1024", "1024x1792", "1792x1024"],
"default": "1024x1024",
"tooltip": "Image size",
},
),
},
"hidden": {"auth_token": "AUTH_TOKEN_COMFY_ORG"},
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/OpenAI"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
prompt,
seed=0,
style="natural",
quality="standard",
size="1024x1024",
auth_token=None,
):
validate_string(prompt, strip_whitespace=False)
model = "dall-e-3"
# build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/openai/images/generations",
method=HttpMethod.POST,
request_model=OpenAIImageGenerationRequest,
response_model=OpenAIImageGenerationResponse,
),
request=OpenAIImageGenerationRequest(
model=model,
prompt=prompt,
quality=quality,
size=size,
style=style,
seed=seed,
),
auth_token=auth_token,
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
class OpenAIGPTImage1(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's GPT Image 1 endpoint.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text prompt for GPT Image 1",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2**31 - 1,
"step": 1,
"display": "number",
"control_after_generate": True,
"tooltip": "not implemented yet in backend",
},
),
"quality": (
IO.COMBO,
{
"options": ["low", "medium", "high"],
"default": "low",
"tooltip": "Image quality, affects cost and generation time.",
},
),
"background": (
IO.COMBO,
{
"options": ["opaque", "transparent"],
"default": "opaque",
"tooltip": "Return image with or without background",
},
),
"size": (
IO.COMBO,
{
"options": ["auto", "1024x1024", "1024x1536", "1536x1024"],
"default": "auto",
"tooltip": "Image size",
},
),
"n": (
IO.INT,
{
"default": 1,
"min": 1,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "How many images to generate",
},
),
"image": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional reference image for image editing.",
},
),
"mask": (
IO.MASK,
{
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
},
),
},
"hidden": {"auth_token": "AUTH_TOKEN_COMFY_ORG"},
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/OpenAI"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
prompt,
seed=0,
quality="low",
background="opaque",
image=None,
mask=None,
n=1,
size="1024x1024",
auth_token=None,
):
validate_string(prompt, strip_whitespace=False)
model = "gpt-image-1"
path = "/proxy/openai/images/generations"
content_type="application/json"
request_class = OpenAIImageGenerationRequest
img_binaries = []
mask_binary = None
files = []
if image is not None:
path = "/proxy/openai/images/edits"
request_class = OpenAIImageEditRequest
content_type ="multipart/form-data"
batch_size = image.shape[0]
for i in range(batch_size):
single_image = image[i : i + 1]
scaled_image = downscale_image_tensor(single_image).squeeze()
image_np = (scaled_image.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
img_binary = img_byte_arr
img_binary.name = f"image_{i}.png"
img_binaries.append(img_binary)
if batch_size == 1:
files.append(("image", img_binary))
else:
files.append(("image[]", img_binary))
if mask is not None:
if image is None:
raise Exception("Cannot use a mask without an input image")
if image.shape[0] != 1:
raise Exception("Cannot use a mask with multiple image")
if mask.shape[1:] != image.shape[1:-1]:
raise Exception("Mask and Image must be the same size")
batch, height, width = mask.shape
rgba_mask = torch.zeros(height, width, 4, device="cpu")
rgba_mask[:, :, 3] = 1 - mask.squeeze().cpu()
scaled_mask = downscale_image_tensor(rgba_mask.unsqueeze(0)).squeeze()
mask_np = (scaled_mask.numpy() * 255).astype(np.uint8)
mask_img = Image.fromarray(mask_np)
mask_img_byte_arr = io.BytesIO()
mask_img.save(mask_img_byte_arr, format="PNG")
mask_img_byte_arr.seek(0)
mask_binary = mask_img_byte_arr
mask_binary.name = "mask.png"
files.append(("mask", mask_binary))
# Build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=request_class,
response_model=OpenAIImageGenerationResponse,
),
request=request_class(
model=model,
prompt=prompt,
quality=quality,
background=background,
n=n,
seed=seed,
size=size,
),
files=files if files else None,
content_type=content_type,
auth_token=auth_token,
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"OpenAIDalle2": OpenAIDalle2,
"OpenAIDalle3": OpenAIDalle3,
"OpenAIGPTImage1": OpenAIGPTImage1,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"OpenAIDalle2": "OpenAI DALL·E 2",
"OpenAIDalle3": "OpenAI DALL·E 3",
"OpenAIGPTImage1": "OpenAI GPT Image 1",
}

View File

@ -0,0 +1,749 @@
"""
Pika x ComfyUI API Nodes
Pika API docs: https://pika-827374fb.mintlify.app/api-reference
"""
import io
from typing import Optional, TypeVar
import logging
import torch
import numpy as np
from comfy_api_nodes.apis import (
PikaBodyGenerate22T2vGenerate22T2vPost,
PikaGenerateResponse,
PikaBodyGenerate22I2vGenerate22I2vPost,
PikaVideoResponse,
PikaBodyGenerate22C2vGenerate22PikascenesPost,
IngredientsMode,
PikaDurationEnum,
PikaResolutionEnum,
PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
PikaBodyGeneratePikaswapsGeneratePikaswapsPost,
PikaBodyGenerate22KeyframeGenerate22PikaframesPost,
Pikaffect,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
tensor_to_bytesio,
download_url_to_video_output,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api.input_impl.video_types import VideoInput, VideoContainer, VideoCodec
from comfy_api.input_impl import VideoFromFile
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeOptions
R = TypeVar("R")
PATH_PIKADDITIONS = "/proxy/pika/generate/pikadditions"
PATH_PIKASWAPS = "/proxy/pika/generate/pikaswaps"
PATH_PIKAFFECTS = "/proxy/pika/generate/pikaffects"
PIKA_API_VERSION = "2.2"
PATH_TEXT_TO_VIDEO = f"/proxy/pika/generate/{PIKA_API_VERSION}/t2v"
PATH_IMAGE_TO_VIDEO = f"/proxy/pika/generate/{PIKA_API_VERSION}/i2v"
PATH_PIKAFRAMES = f"/proxy/pika/generate/{PIKA_API_VERSION}/pikaframes"
PATH_PIKASCENES = f"/proxy/pika/generate/{PIKA_API_VERSION}/pikascenes"
PATH_VIDEO_GET = "/proxy/pika/videos"
class PikaApiError(Exception):
"""Exception for Pika API errors."""
pass
def is_valid_video_response(response: PikaVideoResponse) -> bool:
"""Check if the video response is valid."""
return hasattr(response, "url") and response.url is not None
def is_valid_initial_response(response: PikaGenerateResponse) -> bool:
"""Check if the initial response is valid."""
return hasattr(response, "video_id") and response.video_id is not None
class PikaNodeBase(ComfyNodeABC):
"""Base class for Pika nodes."""
@classmethod
def get_base_inputs_types(
cls, request_model
) -> dict[str, tuple[IO, InputTypeOptions]]:
"""Get the base required inputs types common to all Pika nodes."""
return {
"prompt_text": model_field_to_node_input(
IO.STRING,
request_model,
"promptText",
multiline=True,
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
request_model,
"negativePrompt",
multiline=True,
),
"seed": model_field_to_node_input(
IO.INT,
request_model,
"seed",
min=0,
max=0xFFFFFFFF,
control_after_generate=True,
),
"resolution": model_field_to_node_input(
IO.COMBO,
request_model,
"resolution",
enum_type=PikaResolutionEnum,
),
"duration": model_field_to_node_input(
IO.COMBO,
request_model,
"duration",
enum_type=PikaDurationEnum,
),
}
CATEGORY = "api node/video/Pika"
API_NODE = True
FUNCTION = "api_call"
RETURN_TYPES = ("VIDEO",)
def poll_for_task_status(
self, task_id: str, auth_token: str
) -> PikaGenerateResponse:
polling_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"{PATH_VIDEO_GET}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=PikaVideoResponse,
),
completed_statuses=[
"finished",
],
failed_statuses=["failed", "cancelled"],
status_extractor=lambda response: (
response.status.value if response.status else None
),
progress_extractor=lambda response: (
response.progress if hasattr(response, "progress") else None
),
auth_token=auth_token,
)
return polling_operation.execute()
def execute_task(
self,
initial_operation: SynchronousOperation[R, PikaGenerateResponse],
auth_token: Optional[str] = None,
) -> tuple[VideoFromFile]:
"""Executes the initial operation then polls for the task status until it is completed.
Args:
initial_operation: The initial operation to execute.
auth_token: The authentication token to use for the API call.
Returns:
A tuple containing the video file as a VIDEO output.
"""
initial_response = initial_operation.execute()
if not is_valid_initial_response(initial_response):
error_msg = f"Pika initial request failed. Code: {initial_response.code}, Message: {initial_response.message}, Data: {initial_response.data}"
logging.error(error_msg)
raise PikaApiError(error_msg)
task_id = initial_response.video_id
final_response = self.poll_for_task_status(task_id, auth_token)
if not is_valid_video_response(final_response):
error_msg = (
f"Pika task {task_id} succeeded but no video data found in response."
)
logging.error(error_msg)
raise PikaApiError(error_msg)
video_url = str(final_response.url)
logging.info("Pika task %s succeeded. Video URL: %s", task_id, video_url)
return (download_url_to_video_output(video_url),)
class PikaImageToVideoV2_2(PikaNodeBase):
"""Pika 2.2 Image to Video Node."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": (
IO.IMAGE,
{"tooltip": "The image to convert to video"},
),
**cls.get_base_inputs_types(PikaBodyGenerate22I2vGenerate22I2vPost),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
DESCRIPTION = "Sends an image and prompt to the Pika API v2.2 to generate a video."
def api_call(
self,
image: torch.Tensor,
prompt_text: str,
negative_prompt: str,
seed: int,
resolution: str,
duration: int,
auth_token: Optional[str] = None,
) -> tuple[VideoFromFile]:
# Convert image to BytesIO
image_bytes_io = tensor_to_bytesio(image)
image_bytes_io.seek(0)
pika_files = {"image": ("image.png", image_bytes_io, "image/png")}
# Prepare non-file data
pika_request_data = PikaBodyGenerate22I2vGenerate22I2vPost(
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
resolution=resolution,
duration=duration,
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_IMAGE_TO_VIDEO,
method=HttpMethod.POST,
request_model=PikaBodyGenerate22I2vGenerate22I2vPost,
response_model=PikaGenerateResponse,
),
request=pika_request_data,
files=pika_files,
content_type="multipart/form-data",
auth_token=auth_token,
)
return self.execute_task(initial_operation, auth_token)
class PikaTextToVideoNodeV2_2(PikaNodeBase):
"""Pika Text2Video v2.2 Node."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
**cls.get_base_inputs_types(PikaBodyGenerate22T2vGenerate22T2vPost),
"aspect_ratio": model_field_to_node_input(
IO.FLOAT,
PikaBodyGenerate22T2vGenerate22T2vPost,
"aspectRatio",
step=0.001,
min=0.4,
max=2.5,
default=1.7777777777777777,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
DESCRIPTION = "Sends a text prompt to the Pika API v2.2 to generate a video."
def api_call(
self,
prompt_text: str,
negative_prompt: str,
seed: int,
resolution: str,
duration: int,
aspect_ratio: float,
auth_token: Optional[str] = None,
) -> tuple[VideoFromFile]:
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_TEXT_TO_VIDEO,
method=HttpMethod.POST,
request_model=PikaBodyGenerate22T2vGenerate22T2vPost,
response_model=PikaGenerateResponse,
),
request=PikaBodyGenerate22T2vGenerate22T2vPost(
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
resolution=resolution,
duration=duration,
aspectRatio=aspect_ratio,
),
auth_token=auth_token,
content_type="application/x-www-form-urlencoded",
)
return self.execute_task(initial_operation, auth_token)
class PikaScenesV2_2(PikaNodeBase):
"""PikaScenes v2.2 Node."""
@classmethod
def INPUT_TYPES(cls):
image_ingredient_input = (
IO.IMAGE,
{"tooltip": "Image that will be used as ingredient to create a video."},
)
return {
"required": {
**cls.get_base_inputs_types(
PikaBodyGenerate22C2vGenerate22PikascenesPost,
),
"ingredients_mode": model_field_to_node_input(
IO.COMBO,
PikaBodyGenerate22C2vGenerate22PikascenesPost,
"ingredientsMode",
enum_type=IngredientsMode,
default="creative",
),
"aspect_ratio": model_field_to_node_input(
IO.FLOAT,
PikaBodyGenerate22C2vGenerate22PikascenesPost,
"aspectRatio",
step=0.001,
min=0.4,
max=2.5,
default=1.7777777777777777,
),
},
"optional": {
"image_ingredient_1": image_ingredient_input,
"image_ingredient_2": image_ingredient_input,
"image_ingredient_3": image_ingredient_input,
"image_ingredient_4": image_ingredient_input,
"image_ingredient_5": image_ingredient_input,
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
DESCRIPTION = "Combine your images to create a video with the objects in them. Upload multiple images as ingredients and generate a high-quality video that incorporates all of them."
def api_call(
self,
prompt_text: str,
negative_prompt: str,
seed: int,
resolution: str,
duration: int,
ingredients_mode: str,
aspect_ratio: float,
image_ingredient_1: Optional[torch.Tensor] = None,
image_ingredient_2: Optional[torch.Tensor] = None,
image_ingredient_3: Optional[torch.Tensor] = None,
image_ingredient_4: Optional[torch.Tensor] = None,
image_ingredient_5: Optional[torch.Tensor] = None,
auth_token: Optional[str] = None,
) -> tuple[VideoFromFile]:
# Convert all passed images to BytesIO
all_image_bytes_io = []
for image in [
image_ingredient_1,
image_ingredient_2,
image_ingredient_3,
image_ingredient_4,
image_ingredient_5,
]:
if image is not None:
image_bytes_io = tensor_to_bytesio(image)
image_bytes_io.seek(0)
all_image_bytes_io.append(image_bytes_io)
pika_files = [
("images", (f"image_{i}.png", image_bytes_io, "image/png"))
for i, image_bytes_io in enumerate(all_image_bytes_io)
]
pika_request_data = PikaBodyGenerate22C2vGenerate22PikascenesPost(
ingredientsMode=ingredients_mode,
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
resolution=resolution,
duration=duration,
aspectRatio=aspect_ratio,
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKASCENES,
method=HttpMethod.POST,
request_model=PikaBodyGenerate22C2vGenerate22PikascenesPost,
response_model=PikaGenerateResponse,
),
request=pika_request_data,
files=pika_files,
content_type="multipart/form-data",
auth_token=auth_token,
)
return self.execute_task(initial_operation, auth_token)
class PikAdditionsNode(PikaNodeBase):
"""Pika Pikadditions Node. Add an image into a video."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"video": (IO.VIDEO, {"tooltip": "The video to add an image to."}),
"image": (IO.IMAGE, {"tooltip": "The image to add to the video."}),
"prompt_text": model_field_to_node_input(
IO.STRING,
PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
"promptText",
multiline=True,
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
"negativePrompt",
multiline=True,
),
"seed": model_field_to_node_input(
IO.INT,
PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
"seed",
min=0,
max=0xFFFFFFFF,
control_after_generate=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
DESCRIPTION = "Add any object or image into your video. Upload a video and specify what youd like to add to create a seamlessly integrated result."
def api_call(
self,
video: VideoInput,
image: torch.Tensor,
prompt_text: str,
negative_prompt: str,
seed: int,
auth_token: Optional[str] = None,
) -> tuple[VideoFromFile]:
# Convert video to BytesIO
video_bytes_io = io.BytesIO()
video.save_to(video_bytes_io, format=VideoContainer.MP4, codec=VideoCodec.H264)
video_bytes_io.seek(0)
# Convert image to BytesIO
image_bytes_io = tensor_to_bytesio(image)
image_bytes_io.seek(0)
pika_files = [
("video", ("video.mp4", video_bytes_io, "video/mp4")),
("image", ("image.png", image_bytes_io, "image/png")),
]
# Prepare non-file data
pika_request_data = PikaBodyGeneratePikadditionsGeneratePikadditionsPost(
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKADDITIONS,
method=HttpMethod.POST,
request_model=PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
response_model=PikaGenerateResponse,
),
request=pika_request_data,
files=pika_files,
content_type="multipart/form-data",
auth_token=auth_token,
)
return self.execute_task(initial_operation, auth_token)
class PikaSwapsNode(PikaNodeBase):
"""Pika Pikaswaps Node."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"video": (IO.VIDEO, {"tooltip": "The video to swap an object in."}),
"image": (
IO.IMAGE,
{
"tooltip": "The image used to replace the masked object in the video."
},
),
"mask": (
IO.MASK,
{"tooltip": "Use the mask to define areas in the video to replace"},
),
"prompt_text": model_field_to_node_input(
IO.STRING,
PikaBodyGeneratePikaswapsGeneratePikaswapsPost,
"promptText",
multiline=True,
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
PikaBodyGeneratePikaswapsGeneratePikaswapsPost,
"negativePrompt",
multiline=True,
),
"seed": model_field_to_node_input(
IO.INT,
PikaBodyGeneratePikaswapsGeneratePikaswapsPost,
"seed",
min=0,
max=0xFFFFFFFF,
control_after_generate=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
DESCRIPTION = "Swap out any object or region of your video with a new image or object. Define areas to replace either with a mask or coordinates."
RETURN_TYPES = ("VIDEO",)
def api_call(
self,
video: VideoInput,
image: torch.Tensor,
mask: torch.Tensor,
prompt_text: str,
negative_prompt: str,
seed: int,
auth_token: Optional[str] = None,
) -> tuple[VideoFromFile]:
# Convert video to BytesIO
video_bytes_io = io.BytesIO()
video.save_to(video_bytes_io, format=VideoContainer.MP4, codec=VideoCodec.H264)
video_bytes_io.seek(0)
# Convert mask to binary mask with three channels
mask = torch.round(mask)
mask = mask.repeat(1, 3, 1, 1)
# Convert 3-channel binary mask to BytesIO
mask_bytes_io = io.BytesIO()
mask_bytes_io.write(mask.numpy().astype(np.uint8))
mask_bytes_io.seek(0)
# Convert image to BytesIO
image_bytes_io = tensor_to_bytesio(image)
image_bytes_io.seek(0)
pika_files = [
("video", ("video.mp4", video_bytes_io, "video/mp4")),
("image", ("image.png", image_bytes_io, "image/png")),
("modifyRegionMask", ("mask.png", mask_bytes_io, "image/png")),
]
# Prepare non-file data
pika_request_data = PikaBodyGeneratePikaswapsGeneratePikaswapsPost(
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKADDITIONS,
method=HttpMethod.POST,
request_model=PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
response_model=PikaGenerateResponse,
),
request=pika_request_data,
files=pika_files,
content_type="multipart/form-data",
auth_token=auth_token,
)
return self.execute_task(initial_operation, auth_token)
class PikaffectsNode(PikaNodeBase):
"""Pika Pikaffects Node."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": (
IO.IMAGE,
{"tooltip": "The reference image to apply the Pikaffect to."},
),
"pikaffect": model_field_to_node_input(
IO.COMBO,
PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
"pikaffect",
enum_type=Pikaffect,
default="Cake-ify",
),
"prompt_text": model_field_to_node_input(
IO.STRING,
PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
"promptText",
multiline=True,
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
"negativePrompt",
multiline=True,
),
"seed": model_field_to_node_input(
IO.INT,
PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
"seed",
min=0,
max=0xFFFFFFFF,
control_after_generate=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
DESCRIPTION = "Generate a video with a specific Pikaffect. Supported Pikaffects: Cake-ify, Crumble, Crush, Decapitate, Deflate, Dissolve, Explode, Eye-pop, Inflate, Levitate, Melt, Peel, Poke, Squish, Ta-da, Tear"
def api_call(
self,
image: torch.Tensor,
pikaffect: str,
prompt_text: str,
negative_prompt: str,
seed: int,
auth_token: Optional[str] = None,
) -> tuple[VideoFromFile]:
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKAFFECTS,
method=HttpMethod.POST,
request_model=PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
response_model=PikaGenerateResponse,
),
request=PikaBodyGeneratePikaffectsGeneratePikaffectsPost(
pikaffect=pikaffect,
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
),
files={"image": ("image.png", tensor_to_bytesio(image), "image/png")},
content_type="multipart/form-data",
auth_token=auth_token,
)
return self.execute_task(initial_operation, auth_token)
class PikaStartEndFrameNode2_2(PikaNodeBase):
"""PikaFrames v2.2 Node."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image_start": (IO.IMAGE, {"tooltip": "The first image to combine."}),
"image_end": (IO.IMAGE, {"tooltip": "The last image to combine."}),
**cls.get_base_inputs_types(
PikaBodyGenerate22KeyframeGenerate22PikaframesPost
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
DESCRIPTION = "Generate a video by combining your first and last frame. Upload two images to define the start and end points, and let the AI create a smooth transition between them."
def api_call(
self,
image_start: torch.Tensor,
image_end: torch.Tensor,
prompt_text: str,
negative_prompt: str,
seed: int,
resolution: str,
duration: int,
auth_token: Optional[str] = None,
) -> tuple[VideoFromFile]:
pika_files = [
(
"keyFrames",
("image_start.png", tensor_to_bytesio(image_start), "image/png"),
),
("keyFrames", ("image_end.png", tensor_to_bytesio(image_end), "image/png")),
]
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKAFRAMES,
method=HttpMethod.POST,
request_model=PikaBodyGenerate22KeyframeGenerate22PikaframesPost,
response_model=PikaGenerateResponse,
),
request=PikaBodyGenerate22KeyframeGenerate22PikaframesPost(
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
resolution=resolution,
duration=duration,
),
files=pika_files,
content_type="multipart/form-data",
auth_token=auth_token,
)
return self.execute_task(initial_operation, auth_token)
NODE_CLASS_MAPPINGS = {
"PikaImageToVideoNode2_2": PikaImageToVideoV2_2,
"PikaTextToVideoNode2_2": PikaTextToVideoNodeV2_2,
"PikaScenesV2_2": PikaScenesV2_2,
"Pikadditions": PikAdditionsNode,
"Pikaswaps": PikaSwapsNode,
"Pikaffects": PikaffectsNode,
"PikaStartEndFrameNode2_2": PikaStartEndFrameNode2_2,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PikaImageToVideoNode2_2": "Pika Image to Video",
"PikaTextToVideoNode2_2": "Pika Text to Video",
"PikaScenesV2_2": "Pika Scenes (Video Image Composition)",
"Pikadditions": "Pikadditions (Video Object Insertion)",
"Pikaswaps": "Pika Swaps (Video Object Replacement)",
"Pikaffects": "Pikaffects (Video Effects)",
"PikaStartEndFrameNode2_2": "Pika Start and End Frame to Video",
}

View File

@ -0,0 +1,492 @@
from inspect import cleandoc
from comfy_api_nodes.apis.pixverse_api import (
PixverseTextVideoRequest,
PixverseImageVideoRequest,
PixverseTransitionVideoRequest,
PixverseImageUploadResponse,
PixverseVideoResponse,
PixverseGenerationStatusResponse,
PixverseAspectRatio,
PixverseQuality,
PixverseDuration,
PixverseMotionMode,
PixverseStatus,
PixverseIO,
pixverse_templates,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
tensor_to_bytesio,
validate_string,
)
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api.input_impl import VideoFromFile
import torch
import requests
from io import BytesIO
def upload_image_to_pixverse(image: torch.Tensor, auth_token=None):
# first, upload image to Pixverse and get image id to use in actual generation call
files = {
"image": tensor_to_bytesio(image)
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/pixverse/image/upload",
method=HttpMethod.POST,
request_model=EmptyRequest,
response_model=PixverseImageUploadResponse,
),
request=EmptyRequest(),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_upload: PixverseImageUploadResponse = operation.execute()
if response_upload.Resp is None:
raise Exception(f"PixVerse image upload request failed: '{response_upload.ErrMsg}'")
return response_upload.Resp.img_id
class PixverseTemplateNode:
"""
Select template for PixVerse Video generation.
"""
RETURN_TYPES = (PixverseIO.TEMPLATE,)
RETURN_NAMES = ("pixverse_template",)
FUNCTION = "create_template"
CATEGORY = "api node/video/PixVerse"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"template": (list(pixverse_templates.keys()), ),
}
}
def create_template(self, template: str):
template_id = pixverse_templates.get(template, None)
if template_id is None:
raise Exception(f"Template '{template}' is not recognized.")
# just return the integer
return (template_id,)
class PixverseTextToVideoNode(ComfyNodeABC):
"""
Generates videos synchronously based on prompt and output_size.
"""
RETURN_TYPES = (IO.VIDEO,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/video/PixVerse"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the video generation",
},
),
"aspect_ratio": (
[ratio.value for ratio in PixverseAspectRatio],
),
"quality": (
[resolution.value for resolution in PixverseQuality],
{
"default": PixverseQuality.res_540p,
},
),
"duration_seconds": ([dur.value for dur in PixverseDuration],),
"motion_mode": ([mode.value for mode in PixverseMotionMode],),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"control_after_generate": True,
"tooltip": "Seed for video generation.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "An optional text description of undesired elements on an image.",
},
),
"pixverse_template": (
PixverseIO.TEMPLATE,
{
"tooltip": "An optional template to influence style of generation, created by the PixVerse Template node."
}
)
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(
self,
prompt: str,
aspect_ratio: str,
quality: str,
duration_seconds: int,
motion_mode: str,
seed,
negative_prompt: str=None,
pixverse_template: int=None,
auth_token=None,
**kwargs,
):
validate_string(prompt, strip_whitespace=False)
# 1080p is limited to 5 seconds duration
# only normal motion_mode supported for 1080p or for non-5 second duration
if quality == PixverseQuality.res_1080p:
motion_mode = PixverseMotionMode.normal
duration_seconds = PixverseDuration.dur_5
elif duration_seconds != PixverseDuration.dur_5:
motion_mode = PixverseMotionMode.normal
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/pixverse/video/text/generate",
method=HttpMethod.POST,
request_model=PixverseTextVideoRequest,
response_model=PixverseVideoResponse,
),
request=PixverseTextVideoRequest(
prompt=prompt,
aspect_ratio=aspect_ratio,
quality=quality,
duration=duration_seconds,
motion_mode=motion_mode,
negative_prompt=negative_prompt if negative_prompt else None,
template_id=pixverse_template,
seed=seed,
),
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=PixverseGenerationStatusResponse,
),
completed_statuses=[PixverseStatus.successful],
failed_statuses=[PixverseStatus.contents_moderation, PixverseStatus.failed, PixverseStatus.deleted],
status_extractor=lambda x: x.Resp.status,
auth_token=auth_token,
)
response_poll = operation.execute()
vid_response = requests.get(response_poll.Resp.url)
return (VideoFromFile(BytesIO(vid_response.content)),)
class PixverseImageToVideoNode(ComfyNodeABC):
"""
Generates videos synchronously based on prompt and output_size.
"""
RETURN_TYPES = (IO.VIDEO,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/video/PixVerse"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (
IO.IMAGE,
),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the video generation",
},
),
"quality": (
[resolution.value for resolution in PixverseQuality],
{
"default": PixverseQuality.res_540p,
},
),
"duration_seconds": ([dur.value for dur in PixverseDuration],),
"motion_mode": ([mode.value for mode in PixverseMotionMode],),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"control_after_generate": True,
"tooltip": "Seed for video generation.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "An optional text description of undesired elements on an image.",
},
),
"pixverse_template": (
PixverseIO.TEMPLATE,
{
"tooltip": "An optional template to influence style of generation, created by the PixVerse Template node."
}
)
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(
self,
image: torch.Tensor,
prompt: str,
quality: str,
duration_seconds: int,
motion_mode: str,
seed,
negative_prompt: str=None,
pixverse_template: int=None,
auth_token=None,
**kwargs,
):
validate_string(prompt, strip_whitespace=False)
img_id = upload_image_to_pixverse(image, auth_token=auth_token)
# 1080p is limited to 5 seconds duration
# only normal motion_mode supported for 1080p or for non-5 second duration
if quality == PixverseQuality.res_1080p:
motion_mode = PixverseMotionMode.normal
duration_seconds = PixverseDuration.dur_5
elif duration_seconds != PixverseDuration.dur_5:
motion_mode = PixverseMotionMode.normal
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/pixverse/video/img/generate",
method=HttpMethod.POST,
request_model=PixverseImageVideoRequest,
response_model=PixverseVideoResponse,
),
request=PixverseImageVideoRequest(
img_id=img_id,
prompt=prompt,
quality=quality,
duration=duration_seconds,
motion_mode=motion_mode,
negative_prompt=negative_prompt if negative_prompt else None,
template_id=pixverse_template,
seed=seed,
),
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=PixverseGenerationStatusResponse,
),
completed_statuses=[PixverseStatus.successful],
failed_statuses=[PixverseStatus.contents_moderation, PixverseStatus.failed, PixverseStatus.deleted],
status_extractor=lambda x: x.Resp.status,
auth_token=auth_token,
)
response_poll = operation.execute()
vid_response = requests.get(response_poll.Resp.url)
return (VideoFromFile(BytesIO(vid_response.content)),)
class PixverseTransitionVideoNode(ComfyNodeABC):
"""
Generates videos synchronously based on prompt and output_size.
"""
RETURN_TYPES = (IO.VIDEO,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/video/PixVerse"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"first_frame": (
IO.IMAGE,
),
"last_frame": (
IO.IMAGE,
),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the video generation",
},
),
"quality": (
[resolution.value for resolution in PixverseQuality],
{
"default": PixverseQuality.res_540p,
},
),
"duration_seconds": ([dur.value for dur in PixverseDuration],),
"motion_mode": ([mode.value for mode in PixverseMotionMode],),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"control_after_generate": True,
"tooltip": "Seed for video generation.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "An optional text description of undesired elements on an image.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(
self,
first_frame: torch.Tensor,
last_frame: torch.Tensor,
prompt: str,
quality: str,
duration_seconds: int,
motion_mode: str,
seed,
negative_prompt: str=None,
auth_token=None,
**kwargs,
):
validate_string(prompt, strip_whitespace=False)
first_frame_id = upload_image_to_pixverse(first_frame, auth_token=auth_token)
last_frame_id = upload_image_to_pixverse(last_frame, auth_token=auth_token)
# 1080p is limited to 5 seconds duration
# only normal motion_mode supported for 1080p or for non-5 second duration
if quality == PixverseQuality.res_1080p:
motion_mode = PixverseMotionMode.normal
duration_seconds = PixverseDuration.dur_5
elif duration_seconds != PixverseDuration.dur_5:
motion_mode = PixverseMotionMode.normal
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/pixverse/video/transition/generate",
method=HttpMethod.POST,
request_model=PixverseTransitionVideoRequest,
response_model=PixverseVideoResponse,
),
request=PixverseTransitionVideoRequest(
first_frame_img=first_frame_id,
last_frame_img=last_frame_id,
prompt=prompt,
quality=quality,
duration=duration_seconds,
motion_mode=motion_mode,
negative_prompt=negative_prompt if negative_prompt else None,
seed=seed,
),
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=PixverseGenerationStatusResponse,
),
completed_statuses=[PixverseStatus.successful],
failed_statuses=[PixverseStatus.contents_moderation, PixverseStatus.failed, PixverseStatus.deleted],
status_extractor=lambda x: x.Resp.status,
auth_token=auth_token,
)
response_poll = operation.execute()
vid_response = requests.get(response_poll.Resp.url)
return (VideoFromFile(BytesIO(vid_response.content)),)
NODE_CLASS_MAPPINGS = {
"PixverseTextToVideoNode": PixverseTextToVideoNode,
"PixverseImageToVideoNode": PixverseImageToVideoNode,
"PixverseTransitionVideoNode": PixverseTransitionVideoNode,
"PixverseTemplateNode": PixverseTemplateNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PixverseTextToVideoNode": "PixVerse Text to Video",
"PixverseImageToVideoNode": "PixVerse Image to Video",
"PixverseTransitionVideoNode": "PixVerse Transition Video",
"PixverseTemplateNode": "PixVerse Template",
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,609 @@
from inspect import cleandoc
from comfy.comfy_types.node_typing import IO
from comfy_api_nodes.apis.stability_api import (
StabilityUpscaleConservativeRequest,
StabilityUpscaleCreativeRequest,
StabilityAsyncResponse,
StabilityResultsGetResponse,
StabilityStable3_5Request,
StabilityStableUltraRequest,
StabilityStableUltraResponse,
StabilityAspectRatio,
Stability_SD3_5_Model,
Stability_SD3_5_GenerationMode,
get_stability_style_presets,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
bytesio_to_image_tensor,
tensor_to_bytesio,
validate_string,
)
import torch
import base64
from io import BytesIO
from enum import Enum
class StabilityPollStatus(str, Enum):
finished = "finished"
in_progress = "in_progress"
failed = "failed"
def get_async_dummy_status(x: StabilityResultsGetResponse):
if x.name is not None or x.errors is not None:
return StabilityPollStatus.failed
elif x.finish_reason is not None:
return StabilityPollStatus.finished
return StabilityPollStatus.in_progress
class StabilityStableImageUltraNode:
"""
Generates images synchronously based on prompt and resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
"What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
"elements, colors, and subjects will lead to better results. " +
"To control the weight of a given word use the format `(word:weight)`," +
"where `word` is the word you'd like to control the weight of and `weight`" +
"is a value between 0 and 1. For example: `The sky was a crisp (blue:0.3) and (green:0.8)`" +
"would convey a sky that was blue and green, but more green than blue."
},
),
"aspect_ratio": ([x.value for x in StabilityAspectRatio],
{
"default": StabilityAspectRatio.ratio_1_1,
"tooltip": "Aspect ratio of generated image.",
},
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"image": (IO.IMAGE,),
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "A blurb of text describing what you do not wish to see in the output image. This is an advanced feature."
},
),
"image_denoise": (
IO.FLOAT,
{
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, prompt: str, aspect_ratio: str, style_preset: str, seed: int,
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
auth_token=None):
validate_string(prompt, strip_whitespace=False)
# prepare image binary if image present
image_binary = None
if image is not None:
image_binary = tensor_to_bytesio(image, total_pixels=1504*1504).read()
else:
image_denoise = None
if not negative_prompt:
negative_prompt = None
if style_preset == "None":
style_preset = None
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/generate/ultra",
method=HttpMethod.POST,
request_model=StabilityStableUltraRequest,
response_model=StabilityStableUltraResponse,
),
request=StabilityStableUltraRequest(
prompt=prompt,
negative_prompt=negative_prompt,
aspect_ratio=aspect_ratio,
seed=seed,
strength=image_denoise,
style_preset=style_preset,
),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stable Image Ultra generation failed: {response_api.finish_reason}.")
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
class StabilityStableImageSD_3_5Node:
"""
Generates images synchronously based on prompt and resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"model": ([x.value for x in Stability_SD3_5_Model],),
"aspect_ratio": ([x.value for x in StabilityAspectRatio],
{
"default": StabilityAspectRatio.ratio_1_1,
"tooltip": "Aspect ratio of generated image.",
},
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
),
"cfg_scale": (
IO.FLOAT,
{
"default": 4.0,
"min": 1.0,
"max": 10.0,
"step": 0.1,
"tooltip": "How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"image": (IO.IMAGE,),
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
"image_denoise": (
IO.FLOAT,
{
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, model: str, prompt: str, aspect_ratio: str, style_preset: str, seed: int, cfg_scale: float,
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
auth_token=None):
validate_string(prompt, strip_whitespace=False)
# prepare image binary if image present
image_binary = None
mode = Stability_SD3_5_GenerationMode.text_to_image
if image is not None:
image_binary = tensor_to_bytesio(image, total_pixels=1504*1504).read()
mode = Stability_SD3_5_GenerationMode.image_to_image
aspect_ratio = None
else:
image_denoise = None
if not negative_prompt:
negative_prompt = None
if style_preset == "None":
style_preset = None
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/generate/sd3",
method=HttpMethod.POST,
request_model=StabilityStable3_5Request,
response_model=StabilityStableUltraResponse,
),
request=StabilityStable3_5Request(
prompt=prompt,
negative_prompt=negative_prompt,
aspect_ratio=aspect_ratio,
seed=seed,
strength=image_denoise,
style_preset=style_preset,
cfg_scale=cfg_scale,
model=model,
mode=mode,
),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stable Diffusion 3.5 Image generation failed: {response_api.finish_reason}.")
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
class StabilityUpscaleConservativeNode:
"""
Upscale image with minimal alterations to 4K resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"creativity": (
IO.FLOAT,
{
"default": 0.35,
"min": 0.2,
"max": 0.5,
"step": 0.01,
"tooltip": "Controls the likelihood of creating additional details not heavily conditioned by the init image.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, image: torch.Tensor, prompt: str, creativity: float, seed: int, negative_prompt: str=None,
auth_token=None):
validate_string(prompt, strip_whitespace=False)
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
if not negative_prompt:
negative_prompt = None
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/conservative",
method=HttpMethod.POST,
request_model=StabilityUpscaleConservativeRequest,
response_model=StabilityStableUltraResponse,
),
request=StabilityUpscaleConservativeRequest(
prompt=prompt,
negative_prompt=negative_prompt,
creativity=round(creativity,2),
seed=seed,
),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Conservative generation failed: {response_api.finish_reason}.")
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
class StabilityUpscaleCreativeNode:
"""
Upscale image with minimal alterations to 4K resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"creativity": (
IO.FLOAT,
{
"default": 0.3,
"min": 0.1,
"max": 0.5,
"step": 0.01,
"tooltip": "Controls the likelihood of creating additional details not heavily conditioned by the init image.",
},
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, image: torch.Tensor, prompt: str, creativity: float, style_preset: str, seed: int, negative_prompt: str=None,
auth_token=None):
validate_string(prompt, strip_whitespace=False)
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
if not negative_prompt:
negative_prompt = None
if style_preset == "None":
style_preset = None
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/creative",
method=HttpMethod.POST,
request_model=StabilityUpscaleCreativeRequest,
response_model=StabilityAsyncResponse,
),
request=StabilityUpscaleCreativeRequest(
prompt=prompt,
negative_prompt=negative_prompt,
creativity=round(creativity,2),
style_preset=style_preset,
seed=seed,
),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/stability/v2beta/results/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=StabilityResultsGetResponse,
),
poll_interval=3,
completed_statuses=[StabilityPollStatus.finished],
failed_statuses=[StabilityPollStatus.failed],
status_extractor=lambda x: get_async_dummy_status(x),
auth_token=auth_token,
)
response_poll: StabilityResultsGetResponse = operation.execute()
if response_poll.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Creative generation failed: {response_poll.finish_reason}.")
image_data = base64.b64decode(response_poll.result)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
class StabilityUpscaleFastNode:
"""
Quickly upscales an image via Stability API call to 4x its original size; intended for upscaling low-quality/compressed images.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
},
"optional": {
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, image: torch.Tensor,
auth_token=None):
image_binary = tensor_to_bytesio(image, total_pixels=4096*4096).read()
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/fast",
method=HttpMethod.POST,
request_model=EmptyRequest,
response_model=StabilityStableUltraResponse,
),
request=EmptyRequest(),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Fast failed: {response_api.finish_reason}.")
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"StabilityStableImageUltraNode": StabilityStableImageUltraNode,
"StabilityStableImageSD_3_5Node": StabilityStableImageSD_3_5Node,
"StabilityUpscaleConservativeNode": StabilityUpscaleConservativeNode,
"StabilityUpscaleCreativeNode": StabilityUpscaleCreativeNode,
"StabilityUpscaleFastNode": StabilityUpscaleFastNode,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"StabilityStableImageUltraNode": "Stability AI Stable Image Ultra",
"StabilityStableImageSD_3_5Node": "Stability AI Stable Diffusion 3.5 Image",
"StabilityUpscaleConservativeNode": "Stability AI Upscale Conservative",
"StabilityUpscaleCreativeNode": "Stability AI Upscale Creative",
"StabilityUpscaleFastNode": "Stability AI Upscale Fast",
}

View File

@ -0,0 +1,283 @@
import io
import logging
import base64
import requests
import torch
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis import (
Veo2GenVidRequest,
Veo2GenVidResponse,
Veo2GenVidPollRequest,
Veo2GenVidPollResponse
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
)
from comfy_api_nodes.apinode_utils import (
downscale_image_tensor,
tensor_to_base64_string
)
def convert_image_to_base64(image: torch.Tensor):
if image is None:
return None
scaled_image = downscale_image_tensor(image, total_pixels=2048*2048)
return tensor_to_base64_string(scaled_image)
class VeoVideoGenerationNode(ComfyNodeABC):
"""
Generates videos from text prompts using Google's Veo API.
This node can create videos from text descriptions and optional image inputs,
with control over parameters like aspect ratio, duration, and more.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text description of the video",
},
),
"aspect_ratio": (
IO.COMBO,
{
"options": ["16:9", "9:16"],
"default": "16:9",
"tooltip": "Aspect ratio of the output video",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Negative text prompt to guide what to avoid in the video",
},
),
"duration_seconds": (
IO.INT,
{
"default": 5,
"min": 5,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "Duration of the output video in seconds",
},
),
"enhance_prompt": (
IO.BOOLEAN,
{
"default": True,
"tooltip": "Whether to enhance the prompt with AI assistance",
}
),
"person_generation": (
IO.COMBO,
{
"options": ["ALLOW", "BLOCK"],
"default": "ALLOW",
"tooltip": "Whether to allow generating people in the video",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFF,
"step": 1,
"display": "number",
"control_after_generate": True,
"tooltip": "Seed for video generation (0 for random)",
},
),
"image": (IO.IMAGE, {
"default": None,
"tooltip": "Optional reference image to guide video generation",
}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
RETURN_TYPES = (IO.VIDEO,)
FUNCTION = "generate_video"
CATEGORY = "api node/video/Veo"
DESCRIPTION = "Generates videos from text prompts using Google's Veo API"
API_NODE = True
def generate_video(
self,
prompt,
aspect_ratio="16:9",
negative_prompt="",
duration_seconds=5,
enhance_prompt=True,
person_generation="ALLOW",
seed=0,
image=None,
auth_token=None,
):
# Prepare the instances for the request
instances = []
instance = {
"prompt": prompt
}
# Add image if provided
if image is not None:
image_base64 = convert_image_to_base64(image)
if image_base64:
instance["image"] = {
"bytesBase64Encoded": image_base64,
"mimeType": "image/png"
}
instances.append(instance)
# Create parameters dictionary
parameters = {
"aspectRatio": aspect_ratio,
"personGeneration": person_generation,
"durationSeconds": duration_seconds,
"enhancePrompt": enhance_prompt,
}
# Add optional parameters if provided
if negative_prompt:
parameters["negativePrompt"] = negative_prompt
if seed > 0:
parameters["seed"] = seed
# Initial request to start video generation
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/veo/generate",
method=HttpMethod.POST,
request_model=Veo2GenVidRequest,
response_model=Veo2GenVidResponse
),
request=Veo2GenVidRequest(
instances=instances,
parameters=parameters
),
auth_token=auth_token
)
initial_response = initial_operation.execute()
operation_name = initial_response.name
logging.info(f"Veo generation started with operation name: {operation_name}")
# Define status extractor function
def status_extractor(response):
# Only return "completed" if the operation is done, regardless of success or failure
# We'll check for errors after polling completes
return "completed" if response.done else "pending"
# Define progress extractor function
def progress_extractor(response):
# Could be enhanced if the API provides progress information
return None
# Define the polling operation
poll_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/veo/poll",
method=HttpMethod.POST,
request_model=Veo2GenVidPollRequest,
response_model=Veo2GenVidPollResponse
),
completed_statuses=["completed"],
failed_statuses=[], # No failed statuses, we'll handle errors after polling
status_extractor=status_extractor,
progress_extractor=progress_extractor,
request=Veo2GenVidPollRequest(
operationName=operation_name
),
auth_token=auth_token,
poll_interval=5.0
)
# Execute the polling operation
poll_response = poll_operation.execute()
# Now check for errors in the final response
# Check for error in poll response
if hasattr(poll_response, 'error') and poll_response.error:
error_message = f"Veo API error: {poll_response.error.message} (code: {poll_response.error.code})"
logging.error(error_message)
raise Exception(error_message)
# Check for RAI filtered content
if (hasattr(poll_response.response, 'raiMediaFilteredCount') and
poll_response.response.raiMediaFilteredCount > 0):
# Extract reason message if available
if (hasattr(poll_response.response, 'raiMediaFilteredReasons') and
poll_response.response.raiMediaFilteredReasons):
reason = poll_response.response.raiMediaFilteredReasons[0]
error_message = f"Content filtered by Google's Responsible AI practices: {reason} ({poll_response.response.raiMediaFilteredCount} videos filtered.)"
else:
error_message = f"Content filtered by Google's Responsible AI practices ({poll_response.response.raiMediaFilteredCount} videos filtered.)"
logging.error(error_message)
raise Exception(error_message)
# Extract video data
video_data = None
if poll_response.response and hasattr(poll_response.response, 'videos') and poll_response.response.videos and len(poll_response.response.videos) > 0:
video = poll_response.response.videos[0]
# Check if video is provided as base64 or URL
if hasattr(video, 'bytesBase64Encoded') and video.bytesBase64Encoded:
# Decode base64 string to bytes
video_data = base64.b64decode(video.bytesBase64Encoded)
elif hasattr(video, 'gcsUri') and video.gcsUri:
# Download from URL
video_url = video.gcsUri
video_response = requests.get(video_url)
video_data = video_response.content
else:
raise Exception("Video returned but no data or URL was provided")
else:
raise Exception("Video generation completed but no video was returned")
if not video_data:
raise Exception("No video data was returned")
logging.info("Video generation completed successfully")
# Convert video data to BytesIO object
video_io = io.BytesIO(video_data)
# Return VideoFromFile object
return (VideoFromFile(video_io),)
# Register the node
NODE_CLASS_MAPPINGS = {
"VeoVideoGenerationNode": VeoVideoGenerationNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"VeoVideoGenerationNode": "Google Veo2 Video Generation",
}

View File

@ -0,0 +1,10 @@
# This file is used to filter the Comfy Org OpenAPI spec for schemas related to API Nodes.
# This is used for development purposes to generate stubs for unreleased API endpoints.
apis:
filter:
root: openapi.yaml
decorators:
filter-in:
property: tags
value: ['API Nodes']
matchStrategy: all

View File

@ -0,0 +1,10 @@
# This file is used to filter the Comfy Org OpenAPI spec for schemas related to API Nodes.
apis:
filter:
root: openapi.yaml
decorators:
filter-in:
property: tags
value: ['API Nodes', 'Released']
matchStrategy: all

View File

@ -21,6 +21,21 @@ class String(ComfyNodeABC):
return (value,) return (value,)
class StringMultiline(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.STRING, {"multiline": True,},)},
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: str) -> tuple[str]:
return (value,)
class Int(ComfyNodeABC): class Int(ComfyNodeABC):
@classmethod @classmethod
def INPUT_TYPES(cls) -> InputTypeDict: def INPUT_TYPES(cls) -> InputTypeDict:
@ -68,6 +83,7 @@ class Boolean(ComfyNodeABC):
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"PrimitiveString": String, "PrimitiveString": String,
"PrimitiveStringMultiline": StringMultiline,
"PrimitiveInt": Int, "PrimitiveInt": Int,
"PrimitiveFloat": Float, "PrimitiveFloat": Float,
"PrimitiveBoolean": Boolean, "PrimitiveBoolean": Boolean,
@ -75,6 +91,7 @@ NODE_CLASS_MAPPINGS = {
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {
"PrimitiveString": "String", "PrimitiveString": "String",
"PrimitiveStringMultiline": "String (Multiline)",
"PrimitiveInt": "Int", "PrimitiveInt": "Int",
"PrimitiveFloat": "Float", "PrimitiveFloat": "Float",
"PrimitiveBoolean": "Boolean", "PrimitiveBoolean": "Boolean",

View File

@ -2263,7 +2263,17 @@ def init_builtin_extra_nodes():
api_nodes_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_api_nodes") api_nodes_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_api_nodes")
api_nodes_files = [ api_nodes_files = [
"nodes_api.py", "nodes_ideogram.py",
"nodes_openai.py",
"nodes_minimax.py",
"nodes_veo2.py",
"nodes_kling.py",
"nodes_bfl.py",
"nodes_luma.py",
"nodes_recraft.py",
"nodes_pixverse.py",
"nodes_stability.py",
"nodes_pika.py",
] ]
import_failed = [] import_failed = []

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.18.6 comfyui-frontend-package==1.18.9
comfyui-workflow-templates==0.1.3 comfyui-workflow-templates==0.1.11
torch torch
torchsde torchsde
torchvision torchvision

View File

@ -0,0 +1,297 @@
from typing import Optional
from enum import Enum
from pydantic import BaseModel, Field
from comfy.comfy_types.node_typing import IO
from comfy_api_nodes.mapper_utils import model_field_to_node_input
def test_model_field_to_float_input():
"""Tests mapping a float field with constraints."""
class ModelWithFloatField(BaseModel):
cfg_scale: Optional[float] = Field(
default=0.5,
description="Flexibility in video generation",
ge=0.0,
le=1.0,
multiple_of=0.001,
)
expected_output = (
IO.FLOAT,
{
"default": 0.5,
"tooltip": "Flexibility in video generation",
"min": 0.0,
"max": 1.0,
"step": 0.001,
},
)
actual_output = model_field_to_node_input(
IO.FLOAT, ModelWithFloatField, "cfg_scale"
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_float_input_no_constraints():
"""Tests mapping a float field with no constraints."""
class ModelWithFloatField(BaseModel):
cfg_scale: Optional[float] = Field(default=0.5)
expected_output = (
IO.FLOAT,
{
"default": 0.5,
},
)
actual_output = model_field_to_node_input(
IO.FLOAT, ModelWithFloatField, "cfg_scale"
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_int_input():
"""Tests mapping an int field with constraints."""
class ModelWithIntField(BaseModel):
num_frames: Optional[int] = Field(
default=10,
description="Number of frames to generate",
ge=1,
le=100,
multiple_of=1,
)
expected_output = (
IO.INT,
{
"default": 10,
"tooltip": "Number of frames to generate",
"min": 1,
"max": 100,
"step": 1,
},
)
actual_output = model_field_to_node_input(IO.INT, ModelWithIntField, "num_frames")
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_string_input():
"""Tests mapping a string field."""
class ModelWithStringField(BaseModel):
prompt: Optional[str] = Field(
default="A beautiful sunset over a calm ocean",
description="A prompt for the video generation",
)
expected_output = (
IO.STRING,
{
"default": "A beautiful sunset over a calm ocean",
"tooltip": "A prompt for the video generation",
},
)
actual_output = model_field_to_node_input(IO.STRING, ModelWithStringField, "prompt")
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_string_input_multiline():
"""Tests mapping a string field."""
class ModelWithStringField(BaseModel):
prompt: Optional[str] = Field(
default="A beautiful sunset over a calm ocean",
description="A prompt for the video generation",
)
expected_output = (
IO.STRING,
{
"default": "A beautiful sunset over a calm ocean",
"tooltip": "A prompt for the video generation",
"multiline": True,
},
)
actual_output = model_field_to_node_input(
IO.STRING, ModelWithStringField, "prompt", multiline=True
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_combo_input():
"""Tests mapping a combo field."""
class MockEnum(str, Enum):
option_1 = "option 1"
option_2 = "option 2"
option_3 = "option 3"
class ModelWithComboField(BaseModel):
model_name: Optional[MockEnum] = Field("option 1", description="Model Name")
expected_output = (
IO.COMBO,
{
"options": ["option 1", "option 2", "option 3"],
"default": "option 1",
"tooltip": "Model Name",
},
)
actual_output = model_field_to_node_input(
IO.COMBO, ModelWithComboField, "model_name", enum_type=MockEnum
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_combo_input_no_options():
"""Tests mapping a combo field with no options."""
class ModelWithComboField(BaseModel):
model_name: Optional[str] = Field(description="Model Name")
expected_output = (
IO.COMBO,
{
"tooltip": "Model Name",
},
)
actual_output = model_field_to_node_input(
IO.COMBO, ModelWithComboField, "model_name"
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_image_input():
"""Tests mapping an image field."""
class ModelWithImageField(BaseModel):
image: Optional[str] = Field(
default=None,
description="An image for the video generation",
)
expected_output = (
IO.IMAGE,
{
"default": None,
"tooltip": "An image for the video generation",
},
)
actual_output = model_field_to_node_input(IO.IMAGE, ModelWithImageField, "image")
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_node_input_no_description():
"""Tests mapping a field with no description."""
class ModelWithNoDescriptionField(BaseModel):
field: Optional[str] = Field(default="default value")
expected_output = (
IO.STRING,
{
"default": "default value",
},
)
actual_output = model_field_to_node_input(
IO.STRING, ModelWithNoDescriptionField, "field"
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_node_input_no_default():
"""Tests mapping a field with no default."""
class ModelWithNoDefaultField(BaseModel):
field: Optional[str] = Field(description="A field with no default")
expected_output = (
IO.STRING,
{
"tooltip": "A field with no default",
},
)
actual_output = model_field_to_node_input(
IO.STRING, ModelWithNoDefaultField, "field"
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_node_input_no_metadata():
"""Tests mapping a field with no metadata or properties defined on the schema."""
class ModelWithNoMetadataField(BaseModel):
field: Optional[str] = Field()
expected_output = (
IO.STRING,
{},
)
actual_output = model_field_to_node_input(
IO.STRING, ModelWithNoMetadataField, "field"
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]
def test_model_field_to_node_input_default_is_none():
"""
Tests mapping a field with a default of `None`.
I.e., the default field should be included as the schema explicitly sets it to `None`.
"""
class ModelWithNoneDefaultField(BaseModel):
field: Optional[str] = Field(
default=None, description="A field with a default of None"
)
expected_output = (
IO.STRING,
{
"default": None,
"tooltip": "A field with a default of None",
},
)
actual_output = model_field_to_node_input(
IO.STRING, ModelWithNoneDefaultField, "field"
)
assert actual_output[0] == expected_output[0]
assert actual_output[1] == expected_output[1]