mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 08:16:44 +00:00
This is not needed. (#8991)
This commit is contained in:
parent
5249e45a1c
commit
0aa1c58b04
@ -288,7 +288,7 @@ def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
|
|||||||
return wav.float() / (2 ** 31)
|
return wav.float() / (2 ** 31)
|
||||||
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
|
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
|
||||||
|
|
||||||
def load(filepath: str, frame_offset: int = 0, num_frames: int = -1) -> tuple[torch.Tensor, int]:
|
def load(filepath: str) -> tuple[torch.Tensor, int]:
|
||||||
with av.open(filepath) as af:
|
with av.open(filepath) as af:
|
||||||
if not af.streams.audio:
|
if not af.streams.audio:
|
||||||
raise ValueError("No audio stream found in the file.")
|
raise ValueError("No audio stream found in the file.")
|
||||||
@ -297,40 +297,20 @@ def load(filepath: str, frame_offset: int = 0, num_frames: int = -1) -> tuple[to
|
|||||||
sr = stream.codec_context.sample_rate
|
sr = stream.codec_context.sample_rate
|
||||||
n_channels = stream.channels
|
n_channels = stream.channels
|
||||||
|
|
||||||
seek_time = frame_offset / sr if frame_offset > 0 else 0.0
|
|
||||||
duration = num_frames / sr if num_frames > 0 else -1.0
|
|
||||||
|
|
||||||
sample_offset = int(sr * seek_time)
|
|
||||||
num_samples = int(sr * duration) if duration >= 0 else -1
|
|
||||||
|
|
||||||
# Small negative offset for MP3 artifacts, NOTE: this is LLM code so idk if it's actually necessary'
|
|
||||||
seek_sec = max(0, seek_time - 0.1) if filepath.lower().endswith('.mp3') else seek_time
|
|
||||||
af.seek(int(seek_sec / stream.time_base), stream=stream)
|
|
||||||
|
|
||||||
frames = []
|
frames = []
|
||||||
length = 0
|
length = 0
|
||||||
for frame in af.decode(streams=stream.index):
|
for frame in af.decode(streams=stream.index):
|
||||||
current_offset = int(frame.rate * frame.pts * frame.time_base)
|
|
||||||
strip = max(0, sample_offset - current_offset)
|
|
||||||
|
|
||||||
buf = torch.from_numpy(frame.to_ndarray())
|
buf = torch.from_numpy(frame.to_ndarray())
|
||||||
if buf.shape[0] != n_channels:
|
if buf.shape[0] != n_channels:
|
||||||
buf = buf.view(-1, n_channels).t()
|
buf = buf.view(-1, n_channels).t()
|
||||||
|
|
||||||
buf = buf[:, strip:]
|
|
||||||
frames.append(buf)
|
frames.append(buf)
|
||||||
length += buf.shape[1]
|
length += buf.shape[1]
|
||||||
|
|
||||||
if num_samples > 0 and length >= num_samples:
|
|
||||||
break
|
|
||||||
|
|
||||||
if not frames:
|
if not frames:
|
||||||
raise ValueError("No audio frames decoded.")
|
raise ValueError("No audio frames decoded.")
|
||||||
|
|
||||||
wav = torch.cat(frames, dim=1)
|
wav = torch.cat(frames, dim=1)
|
||||||
if num_samples > 0:
|
|
||||||
wav = wav[:, :num_samples]
|
|
||||||
|
|
||||||
wav = f32_pcm(wav)
|
wav = f32_pcm(wav)
|
||||||
return wav, sr
|
return wav, sr
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user