From 0621d73a9c56fdc9e79aad87ed260135639bca50 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 26 Jul 2025 01:44:19 -0700 Subject: [PATCH] Remove useless code. (#9059) --- comfy/ldm/wan/vae.py | 41 ----------------------------------------- 1 file changed, 41 deletions(-) diff --git a/comfy/ldm/wan/vae.py b/comfy/ldm/wan/vae.py index a83c6edfd..6b07840fc 100644 --- a/comfy/ldm/wan/vae.py +++ b/comfy/ldm/wan/vae.py @@ -148,29 +148,6 @@ class Resample(nn.Module): feat_idx[0] += 1 return x - def init_weight(self, conv): - conv_weight = conv.weight - nn.init.zeros_(conv_weight) - c1, c2, t, h, w = conv_weight.size() - one_matrix = torch.eye(c1, c2) - init_matrix = one_matrix - nn.init.zeros_(conv_weight) - #conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5 - conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5 - conv.weight.data.copy_(conv_weight) - nn.init.zeros_(conv.bias.data) - - def init_weight2(self, conv): - conv_weight = conv.weight.data - nn.init.zeros_(conv_weight) - c1, c2, t, h, w = conv_weight.size() - init_matrix = torch.eye(c1 // 2, c2) - #init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2) - conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix - conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix - conv.weight.data.copy_(conv_weight) - nn.init.zeros_(conv.bias.data) - class ResidualBlock(nn.Module): @@ -485,12 +462,6 @@ class WanVAE(nn.Module): self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout) - def forward(self, x): - mu, log_var = self.encode(x) - z = self.reparameterize(mu, log_var) - x_recon = self.decode(z) - return x_recon, mu, log_var - def encode(self, x): self.clear_cache() ## cache @@ -536,18 +507,6 @@ class WanVAE(nn.Module): self.clear_cache() return out - def reparameterize(self, mu, log_var): - std = torch.exp(0.5 * log_var) - eps = torch.randn_like(std) - return eps * std + mu - - def sample(self, imgs, deterministic=False): - mu, log_var = self.encode(imgs) - if deterministic: - return mu - std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) - return mu + std * torch.randn_like(std) - def clear_cache(self): self._conv_num = count_conv3d(self.decoder) self._conv_idx = [0]